我试图弄清楚如何同时添加多个列的熊猫与熊猫。我希望在一个步骤中做到这一点,而不是重复多个步骤。

import pandas as pd

df = {'col_1': [0, 1, 2, 3],
        'col_2': [4, 5, 6, 7]}
df = pd.DataFrame(df)

df[[ 'column_new_1', 'column_new_2','column_new_3']] = [np.nan, 'dogs',3]  # I thought this would work here...

当前回答

在编写Pandas时,我的目标是编写可以链接的高效可读代码。我不会在这里解释为什么我这么喜欢链接,我在我的书《Effective Pandas》中对此进行了阐述。

我经常希望以简洁的方式添加新列,这也允许我进行链接。我的一般规则是使用.assign方法更新或创建列。

为了回答你的问题,我将使用以下代码:

(df
 .assign(column_new_1=np.nan,
         column_new_2='dogs',
         column_new_3=3
        )
)

再深入一点。我经常有一个数据框架,其中有我想要添加到我的数据框架的新列。让我们假设它看起来像…一个你想要的三列的数据框架:

df2 = pd.DataFrame({'column_new_1': np.nan,
                    'column_new_2': 'dogs',
                    'column_new_3': 3},
                   index=df.index
                  )

在这种情况下,我将编写以下代码:

(df
 .assign(**df2)
)

其他回答

你可以对列名和值的字典使用赋值。

In [1069]: df.assign(**{'col_new_1': np.nan, 'col2_new_2': 'dogs', 'col3_new_3': 3})
Out[1069]:
   col_1  col_2 col2_new_2  col3_new_3  col_new_1
0      0      4       dogs           3        NaN
1      1      5       dogs           3        NaN
2      2      6       dogs           3        NaN
3      3      7       dogs           3        NaN

使用列表理解,pd。DataFrame和pd.concat

pd.concat(
    [
        df,
        pd.DataFrame(
            [[np.nan, 'dogs', 3] for _ in range(df.shape[0])],
            df.index, ['column_new_1', 'column_new_2','column_new_3']
        )
    ], axis=1)

在编写Pandas时,我的目标是编写可以链接的高效可读代码。我不会在这里解释为什么我这么喜欢链接,我在我的书《Effective Pandas》中对此进行了阐述。

我经常希望以简洁的方式添加新列,这也允许我进行链接。我的一般规则是使用.assign方法更新或创建列。

为了回答你的问题,我将使用以下代码:

(df
 .assign(column_new_1=np.nan,
         column_new_2='dogs',
         column_new_3=3
        )
)

再深入一点。我经常有一个数据框架,其中有我想要添加到我的数据框架的新列。让我们假设它看起来像…一个你想要的三列的数据框架:

df2 = pd.DataFrame({'column_new_1': np.nan,
                    'column_new_2': 'dogs',
                    'column_new_3': 3},
                   index=df.index
                  )

在这种情况下,我将编写以下代码:

(df
 .assign(**df2)
)

你可以使用元组解包:

df = pd.DataFrame({'col1': [1, 2], 'col2': [3, 4]})

df['col3'], df['col4'] = 'a', 10

结果:

   col1  col2 col3  col4
0     1     3    a    10
1     2     4    a    10
import pandas as pd
df = pd.DataFrame({
 'col_1': [0, 1, 2, 3], 
 'col_2': [4, 5, 6, 7]
 })
df['col_3'],  df['col_4'] =  [df.col_1]*2

>> df
col_1   col_2   col_3   col_4
0      4       0       0
1      5       1       1
2      6       2       2
3      7       3       3