我试图弄清楚如何同时添加多个列的熊猫与熊猫。我希望在一个步骤中做到这一点,而不是重复多个步骤。

import pandas as pd

df = {'col_1': [0, 1, 2, 3],
        'col_2': [4, 5, 6, 7]}
df = pd.DataFrame(df)

df[[ 'column_new_1', 'column_new_2','column_new_3']] = [np.nan, 'dogs',3]  # I thought this would work here...

当前回答

如果您只是想添加空的新列,重新索引将完成这项工作

df
   col_1  col_2
0      0      4
1      1      5
2      2      6
3      3      7

df.reindex(list(df)+['column_new_1', 'column_new_2','column_new_3'], axis=1)
   col_1  col_2  column_new_1  column_new_2  column_new_3
0      0      4           NaN           NaN           NaN
1      1      5           NaN           NaN           NaN
2      2      6           NaN           NaN           NaN
3      3      7           NaN           NaN           NaN

完整的代码示例

import numpy as np
import pandas as pd

df = {'col_1': [0, 1, 2, 3],
        'col_2': [4, 5, 6, 7]}
df = pd.DataFrame(df)
print('df',df, sep='\n')
print()
df=df.reindex(list(df)+['column_new_1', 'column_new_2','column_new_3'], axis=1)
print('''df.reindex(list(df)+['column_new_1', 'column_new_2','column_new_3'], axis=1)''',df, sep='\n')

否则就用赋值来赋0

其他回答

你可以使用元组解包:

df = pd.DataFrame({'col1': [1, 2], 'col2': [3, 4]})

df['col3'], df['col4'] = 'a', 10

结果:

   col1  col2 col3  col4
0     1     3    a    10
1     2     4    a    10

在编写Pandas时,我的目标是编写可以链接的高效可读代码。我不会在这里解释为什么我这么喜欢链接,我在我的书《Effective Pandas》中对此进行了阐述。

我经常希望以简洁的方式添加新列,这也允许我进行链接。我的一般规则是使用.assign方法更新或创建列。

为了回答你的问题,我将使用以下代码:

(df
 .assign(column_new_1=np.nan,
         column_new_2='dogs',
         column_new_3=3
        )
)

再深入一点。我经常有一个数据框架,其中有我想要添加到我的数据框架的新列。让我们假设它看起来像…一个你想要的三列的数据框架:

df2 = pd.DataFrame({'column_new_1': np.nan,
                    'column_new_2': 'dogs',
                    'column_new_3': 3},
                   index=df.index
                  )

在这种情况下,我将编写以下代码:

(df
 .assign(**df2)
)

如果用相同的值添加很多缺失的列(a, b, c,....),这里是0,我这样做:

    new_cols = ["a", "b", "c" ] 
    df[new_cols] = pd.DataFrame([[0] * len(new_cols)], index=df.index)

这是基于公认答案的第二种变体。

只是想指出@Matthias Fripp回答中的选项2

(2)我并不一定期望DataFrame以这种方式工作,但它确实如此 df[[‘column_new_1’,‘column_new_2’,‘column_new_3]] = pd.DataFrame ([[np。Nan, 'dogs', 3]], index=df.index)

熊猫自己的文档中已经有记录了吗 http://pandas.pydata.org/pandas-docs/stable/indexing.html#basics

您可以将列列表传递给[]以按此顺序选择列。 如果数据帧中不包含列,则会引发异常。 也可以通过这种方式设置多个列。 您可能会发现这对于将转换(就地)应用到列的子集很有用。

使用列表理解,pd。DataFrame和pd.concat

pd.concat(
    [
        df,
        pd.DataFrame(
            [[np.nan, 'dogs', 3] for _ in range(df.shape[0])],
            df.index, ['column_new_1', 'column_new_2','column_new_3']
        )
    ], axis=1)