我真的很渴望开始使用谷歌在c++中的新Tensorflow库。网站和文档在如何构建项目的c++ API方面真的不清楚,我不知道从哪里开始。

是否有更有经验的人可以通过发现和分享使用tensorflow的c++ API的指南来帮助您?


当前回答

如果你想在一个独立的包上使用Tensorflow c++ api,你可能需要tensorflow_cc。还有一个c api版本的tensorflow。所以)构建c++版本,你可以使用:

bazel build -c opt //tensorflow:libtensorflow_cc.so

注1:如果你想添加intrinsic支持,你可以添加这样的标志:——copt=-msse4.2——copt=-mavx

注2:如果你想在你的项目中也使用OpenCV,当同时使用两个库时(tensorflow问题),你应该使用——config=monolithic。

构建库后,需要将其添加到项目中。 要做到这一点,你可以包括以下路径:

tensorflow
tensorflow/bazel-tensorflow/external/eigen_archive
tensorflow/bazel-tensorflow/external/protobuf_archive/src
tensorflow/bazel-genfiles

并将库链接到您的项目:

tensorflow/bazel-bin/tensorflow/libtensorflow_framework.so (unused if you build with --config=monolithic)
tensorflow/bazel-bin/tensorflow/libtensorflow_cc.so

当你构建你的项目时,你还应该指定你的编译器,你将使用c++11标准。

附注:相对于tensorflow版本1.5的路径(您可能需要检查您的版本中是否有任何更改)。

这个链接也帮助我找到了所有这些信息:链接

其他回答

如果你不介意使用CMake,还有tensorflow_cc项目可以为你构建和安装TF c++ API,以及方便的CMake目标,你可以链接到它。项目README包含一个示例和Dockerfiles,您可以轻松地遵循。

如果你不想自己构建Tensorflow,而且你的操作系统是Debian或Ubuntu,你可以下载带有Tensorflow C/ c++库的预构建包。这个发行版可以用于CPU的C/ c++推理,GPU支持不包括在内:

https://github.com/kecsap/tensorflow_cpp_packaging/releases

这里有一些关于如何在Tensorflow (TFLearn)中冻结检查点的说明,并使用C/ c++ API加载这个模型进行推理:

https://github.com/kecsap/tensorflow_cpp_packaging/blob/master/README.md

注意:我是这个Github项目的开发者。

为了补充@mrry的帖子,我整理了一个教程,解释如何用c++ API加载TensorFlow图。它非常简单,应该帮助您理解所有的部分是如何组合在一起的。这是它的核心:

要求:

巴泽尔安装 克隆TensorFlow回购

文件夹结构:

tensorflow tensorflow / | | /项目名称 Tensorflow / Tensorflow /|项目名称|/|项目名称|。Cc(例如https://gist.github.com/jimfleming/4202e529042c401b17b7) tensorflow / tensorflow / | |项目名称/构建

构建:

cc_binary(
    name = "<project name>",
    srcs = ["<project name>.cc"],
    deps = [
        "//tensorflow/core:tensorflow",
    ]
)

有两点需要注意,但可能有变通办法:

现在,构建需要在TensorFlow回购中进行。 编译后的二进制文件很大(103MB)。

https://medium.com/@jimfleming/loading-a-tensorflow-graph-with-the-c-api-4caaff88463f

我发现使用Tensorflow c++ API的一个替代方案是使用cppflow。

它是一个围绕Tensorflow C API的轻量级c++包装器。你得到非常小的可执行文件,它链接到libtensorflow。已经编译好的文件。还有一些使用的例子,您使用CMAKE而不是Bazel。

上面的答案足以说明如何构建库,但是如何收集头文件仍然很棘手。在这里我分享我用来复制必要的头文件的小脚本。

SOURCE是第一个参数,它是tensorflow SOURCE (build) direcoty; DST是第二个参数,包含目录保存收集的头文件。(如。在cmake中,include_directories(./collected_headers_here))。

#!/bin/bash

SOURCE=$1
DST=$2
echo "-- target dir is $DST"
echo "-- source dir is $SOURCE"

if [[ -e $DST ]];then
    echo "clean $DST"
    rm -rf $DST
    mkdir $DST
fi


# 1. copy the source code c++ api needs
mkdir -p $DST/tensorflow
cp -r $SOURCE/tensorflow/core $DST/tensorflow
cp -r $SOURCE/tensorflow/cc $DST/tensorflow
cp -r $SOURCE/tensorflow/c $DST/tensorflow

# 2. copy the generated code, put them back to
# the right directories along side the source code
if [[ -e $SOURCE/bazel-genfiles/tensorflow ]];then
    prefix="$SOURCE/bazel-genfiles/tensorflow"
    from=$(expr $(echo -n $prefix | wc -m) + 1)

    # eg. compiled protobuf files
    find $SOURCE/bazel-genfiles/tensorflow -type f | while read line;do
        #echo "procese file --> $line"
        line_len=$(echo -n $line | wc -m)
        filename=$(echo $line | rev | cut -d'/' -f1 | rev )
        filename_len=$(echo -n $filename | wc -m)
        to=$(expr $line_len - $filename_len)

        target_dir=$(echo $line | cut -c$from-$to)
        #echo "[$filename] copy $line $DST/tensorflow/$target_dir"
        cp $line $DST/tensorflow/$target_dir
    done
fi


# 3. copy third party files. Why?
# In the tf source code, you can see #include "third_party/...", so you need it
cp -r $SOURCE/third_party $DST

# 4. these headers are enough for me now.
# if your compiler complains missing headers, maybe you can find it in bazel-tensorflow/external
cp -RLf $SOURCE/bazel-tensorflow/external/eigen_archive/Eigen $DST
cp -RLf $SOURCE/bazel-tensorflow/external/eigen_archive/unsupported $DST
cp -RLf $SOURCE/bazel-tensorflow/external/protobuf_archive/src/google $DST
cp -RLf $SOURCE/bazel-tensorflow/external/com_google_absl/absl $DST