这是我想做的:
我定期用网络摄像头拍照。就像时间流逝一样。然而,如果没有什么真正的改变,也就是说,图片看起来几乎相同,我不想存储最新的快照。
我想有某种方法可以量化这种差异,我必须根据经验确定一个阈值。
我追求的是简单而不是完美。 我用的是python。
这是我想做的:
我定期用网络摄像头拍照。就像时间流逝一样。然而,如果没有什么真正的改变,也就是说,图片看起来几乎相同,我不想存储最新的快照。
我想有某种方法可以量化这种差异,我必须根据经验确定一个阈值。
我追求的是简单而不是完美。 我用的是python。
当前回答
可以尝试的小事:
将两个图像重新采样为小的缩略图(例如64 x 64),并将缩略图与某个阈值逐像素进行比较。如果原始图像几乎相同,重新采样的缩略图将非常相似,甚至完全相同。这种方法可以处理特别是在低光场景中可能出现的噪音。如果你调成灰度,效果可能会更好。
其他回答
我认为你可以简单地计算两幅图像亮度之间的欧几里得距离(即平方根(像素对像素的差异平方和)),如果这低于某个经验阈值,就认为它们相等。你最好包装一个C函数。
你见过寻找相似图像的算法问题吗?请查看相关建议。
我建议对你的框架进行小波变换(我已经写了一个使用Haar变换的C扩展);然后,比较两张图片之间最大(比例)小波因子的索引,你应该得到一个数值相似近似。
可以尝试的小事:
将两个图像重新采样为小的缩略图(例如64 x 64),并将缩略图与某个阈值逐像素进行比较。如果原始图像几乎相同,重新采样的缩略图将非常相似,甚至完全相同。这种方法可以处理特别是在低光场景中可能出现的噪音。如果你调成灰度,效果可能会更好。
一个简单的解决方案:
将图像编码为jpeg格式,并寻找文件大小的实质性变化。
我曾经用视频缩略图实现过类似的东西,并且取得了很大的成功和可伸缩性。
你可以计算这两个图像的直方图,然后计算Bhattacharyya系数,这是一个非常快速的算法,我已经用它来检测板球视频中的镜头变化(在C中使用openCV)