这是我想做的:
我定期用网络摄像头拍照。就像时间流逝一样。然而,如果没有什么真正的改变,也就是说,图片看起来几乎相同,我不想存储最新的快照。
我想有某种方法可以量化这种差异,我必须根据经验确定一个阈值。
我追求的是简单而不是完美。 我用的是python。
这是我想做的:
我定期用网络摄像头拍照。就像时间流逝一样。然而,如果没有什么真正的改变,也就是说,图片看起来几乎相同,我不想存储最新的快照。
我想有某种方法可以量化这种差异,我必须根据经验确定一个阈值。
我追求的是简单而不是完美。 我用的是python。
当前回答
推土机的距离可能正是你所需要的。 不过,要实时实现它可能有点重。
其他回答
如果现在回复太晚,我很抱歉,但因为我一直在做类似的事情,我想我可以在某种程度上做出贡献。
也许在OpenCV中你可以使用模板匹配。假设你用的是摄像头
简化图像(可能是阈值?) 应用模板匹配和检查max_val与minMaxLoc
提示:max_val(或min_val取决于所使用的方法)将为您提供数字,较大的数字。为了获得百分比上的差异,使用与相同图像匹配的模板—结果将是100%。
举例的伪代码:
previous_screenshot = ...
current_screenshot = ...
# simplify both images somehow
# get the 100% corresponding value
res = matchTemplate(previous_screenshot, previous_screenshot, TM_CCOEFF)
_, hundred_p_val, _, _ = minMaxLoc(res)
# hundred_p_val is now the 100%
res = matchTemplate(previous_screenshot, current_screenshot, TM_CCOEFF)
_, max_val, _, _ = minMaxLoc(res)
difference_percentage = max_val / hundred_p_val
# the tolerance is now up to you
希望能有所帮助。
可以尝试的小事:
将两个图像重新采样为小的缩略图(例如64 x 64),并将缩略图与某个阈值逐像素进行比较。如果原始图像几乎相同,重新采样的缩略图将非常相似,甚至完全相同。这种方法可以处理特别是在低光场景中可能出现的噪音。如果你调成灰度,效果可能会更好。
下面是我写的一个函数,它以2个图像(文件路径)作为参数,并返回两个图像“像素”组件之间的平均差值。这对我确定视觉上“相等”的图像(当它们不==相等时)非常有效。
(我发现8个是判断图像本质上是否相同的一个很好的限制。)
(如果不添加预处理,图像必须具有相同的尺寸。)
from PIL import Image
def imagesDifference( imageA, imageB ):
A = list(Image.open(imageA, r'r').convert(r'RGB').getdata())
B = list(Image.open(imageB, r'r').convert(r'RGB').getdata())
if (len(A) != len(B)): return -1
diff = []
for i in range(0, len(A)):
diff += [abs(A[i][0] - B[i][0]), abs(A[i][1] - B[i][1]), abs(A[i][2] - B[i][2])]
return (sum(diff) / len(diff))
您可以使用PIL中的函数来比较两个图像。
import Image
import ImageChops
im1 = Image.open("splash.png")
im2 = Image.open("splash2.png")
diff = ImageChops.difference(im2, im1)
diff对象是一幅图像,其中每个像素都是第二幅图像中该像素的颜色值与第一张图像相减的结果。使用差异图像你可以做几件事。最简单的是diff.getbbox()函数。它会告诉你包含两幅图像之间所有变化的最小矩形。
您也可以使用来自PIL的函数实现这里提到的其他东西的近似。
如何计算这两幅图像的曼哈顿距离呢?得到n*n个值。然后你可以做一些事情,比如行平均,把值减少到n个,然后再用一个函数得到一个值。