这是我想做的:

我定期用网络摄像头拍照。就像时间流逝一样。然而,如果没有什么真正的改变,也就是说,图片看起来几乎相同,我不想存储最新的快照。

我想有某种方法可以量化这种差异,我必须根据经验确定一个阈值。

我追求的是简单而不是完美。 我用的是python。


当前回答

我认为你可以简单地计算两幅图像亮度之间的欧几里得距离(即平方根(像素对像素的差异平方和)),如果这低于某个经验阈值,就认为它们相等。你最好包装一个C函数。

其他回答

可以尝试的小事:

将两个图像重新采样为小的缩略图(例如64 x 64),并将缩略图与某个阈值逐像素进行比较。如果原始图像几乎相同,重新采样的缩略图将非常相似,甚至完全相同。这种方法可以处理特别是在低光场景中可能出现的噪音。如果你调成灰度,效果可能会更好。

两种流行且相对简单的方法是:(a)已经提出的欧几里得距离,或(b)标准化互相关。与简单的互相关相比,归一化互相关对光照变化的影响明显更强。维基百科给出了一个标准化互相关的公式。更复杂的方法也存在,但它们需要更多的工作。

使用numpy-like语法,

dist_euclidean = sqrt(sum((i1 - i2)^2)) / i1.size

dist_manhattan = sum(abs(i1 - i2)) / i1.size

dist_ncc = sum( (i1 - mean(i1)) * (i2 - mean(i2)) ) / (
  (i1.size - 1) * stdev(i1) * stdev(i2) )

假设i1和i2为二维灰度图像阵列。

你见过寻找相似图像的算法问题吗?请查看相关建议。

我建议对你的框架进行小波变换(我已经写了一个使用Haar变换的C扩展);然后,比较两张图片之间最大(比例)小波因子的索引,你应该得到一个数值相似近似。

您可以使用PIL中的函数来比较两个图像。

import Image
import ImageChops

im1 = Image.open("splash.png")
im2 = Image.open("splash2.png")

diff = ImageChops.difference(im2, im1)

diff对象是一幅图像,其中每个像素都是第二幅图像中该像素的颜色值与第一张图像相减的结果。使用差异图像你可以做几件事。最简单的是diff.getbbox()函数。它会告诉你包含两幅图像之间所有变化的最小矩形。

您也可以使用来自PIL的函数实现这里提到的其他东西的近似。

如何计算这两幅图像的曼哈顿距离呢?得到n*n个值。然后你可以做一些事情,比如行平均,把值减少到n个,然后再用一个函数得到一个值。