这是我想做的:

我定期用网络摄像头拍照。就像时间流逝一样。然而,如果没有什么真正的改变,也就是说,图片看起来几乎相同,我不想存储最新的快照。

我想有某种方法可以量化这种差异,我必须根据经验确定一个阈值。

我追求的是简单而不是完美。 我用的是python。


当前回答

使用SSIM测量两幅图像之间的结构相似指数度量。

其他回答

I have been having a lot of luck with jpg images taken with the same camera on a tripod by (1) simplifying greatly (like going from 3000 pixels wide to 100 pixels wide or even fewer) (2) flattening each jpg array into a single vector (3) pairwise correlating sequential images with a simple correlate algorithm to get correlation coefficient (4) squaring correlation coefficient to get r-square (i.e fraction of variability in one image explained by variation in the next) (5) generally in my application if r-square < 0.9, I say the two images are different and something happened in between.

这是强大的和快速的在我的实现(Mathematica 7)

这是值得玩转的部分,你感兴趣的图像,并通过裁剪所有的图像到那个小区域,否则一个远离相机但重要的变化将被错过。

我不知道如何使用Python,但我确信它也有相关性,不是吗?

我也遇到了同样的问题,写了一个简单的python模块,使用pillow的ImageChops来比较两个相同大小的图像,创建一个黑白差异图像,并总结直方图值。

你可以直接得到这个分数,也可以得到一个百分比值,与完整的黑白差异进行比较。

它还包含一个简单的is_equal函数,可以在图像传递为相等的情况下(并包括)提供一个模糊阈值。

这种方法不是很详细,但可能对其他正在与相同问题斗争的人有用。

https://pypi.python.org/pypi/imgcompare/

给出的大多数答案都不涉及照明水平。

在进行比较之前,我首先将图像归一化到标准的光照水平。

一种更有原则的方法是使用全局描述符来比较图像,比如GIST或CENTRIST。这里描述的哈希函数也提供了类似的解决方案。

你可以计算这两个图像的直方图,然后计算Bhattacharyya系数,这是一个非常快速的算法,我已经用它来检测板球视频中的镜头变化(在C中使用openCV)