这是我想做的:

我定期用网络摄像头拍照。就像时间流逝一样。然而,如果没有什么真正的改变,也就是说,图片看起来几乎相同,我不想存储最新的快照。

我想有某种方法可以量化这种差异,我必须根据经验确定一个阈值。

我追求的是简单而不是完美。 我用的是python。


当前回答

使用SSIM测量两幅图像之间的结构相似指数度量。

其他回答

如何计算这两幅图像的曼哈顿距离呢?得到n*n个值。然后你可以做一些事情,比如行平均,把值减少到n个,然后再用一个函数得到一个值。

一个简单的解决方案:

将图像编码为jpeg格式,并寻找文件大小的实质性变化。

我曾经用视频缩略图实现过类似的东西,并且取得了很大的成功和可伸缩性。

看看Haar小波是如何由isk-daemon实现的。你可以使用它的imgdb c++代码来实时计算图像之间的差异:

disk -daemon是一个开源的数据库服务器,能够将基于内容的(可视的)图像搜索添加到任何与图像相关的网站或软件。 这项技术允许任何与图像相关的网站或软件的用户在小部件上绘制他们想要查找的图像,并让网站回复他们最相似的图像或简单地在每个图像详细页面请求更多相似的照片。

使用SSIM测量两幅图像之间的结构相似指数度量。

给出的大多数答案都不涉及照明水平。

在进行比较之前,我首先将图像归一化到标准的光照水平。