这是我想做的:

我定期用网络摄像头拍照。就像时间流逝一样。然而,如果没有什么真正的改变,也就是说,图片看起来几乎相同,我不想存储最新的快照。

我想有某种方法可以量化这种差异,我必须根据经验确定一个阈值。

我追求的是简单而不是完美。 我用的是python。


当前回答

我在工作中遇到了类似的问题,我正在重写我们的图像转换端点,我想检查新版本是否与旧版本产生相同或几乎相同的输出。所以我写了这个:

https://github.com/nicolashahn/diffimg

它对相同大小的图像进行操作,并在每个像素级别上测量每个通道的值的差异:R, G, B(, a),取这些通道的平均差值,然后对所有像素的差值进行平均,并返回一个比率。

例如,有一张10x10的白色像素的图像,而同一张图像只有一个像素变成了红色,该像素处的差异是1/3或0.33……(RGB 0,0,0 vs 255,0,0)并且在所有其他像素为0。总共100像素,0.33…/100 =一个~0.33%的图像差异。

我相信这将非常适合OP的项目(我意识到这是一个非常老的帖子,但张贴为未来的StackOverflowers谁也想用python比较图像)。

其他回答

有很多指标可以用来评估两张图片是否像/有多像。

这里我就不讲代码了,因为我认为这应该是一个科学问题,而不是技术问题。

一般来说,问题与人类对图像的感知有关,因此每种算法都有其对人类视觉系统特征的支持。

经典方法有:

可见差异预测器:一种评估图像保真度的算法(https://www.spiedigitallibrary.org/conference-proceedings-of-spie/1666/0000/Visible-differences-predictor--an-algorithm-for-the-assessment-of/10.1117/12.135952.short?SSO=1)

图像质量评估:从错误可见性到结构相似性(http://www.cns.nyu.edu/pub/lcv/wang03-reprint.pdf)

FSIM:一种用于图像质量评估的特征相似度指数(https://www4.comp.polyu.edu.hk/~cslzhang/IQA/TIP_IQA_FSIM.pdf)

其中,SSIM (Image Quality Assessment: From Error Visibility to Structural Similarity)是最容易计算的,其开销也较小,另一篇论文《基于梯度相似度的图像质量评估》(https://www.semanticscholar.org/paper/Image-Quality-Assessment-Based-on-Gradient-Liu-Lin/2b819bef80c02d5d4cb56f27b202535e119df988)也有报道。

还有很多其他的方法。如果你对艺术感兴趣或真正关心,可以在谷歌Scholar上搜索“视觉差异”、“图像质量评估”等。

使用SSIM测量两幅图像之间的结构相似指数度量。

另一个衡量两张图片相似度的好方法是:

import sys
from skimage.measure import compare_ssim
from skimage.transform import resize
from scipy.ndimage import imread

# get two images - resize both to 1024 x 1024
img_a = resize(imread(sys.argv[1]), (2**10, 2**10))
img_b = resize(imread(sys.argv[2]), (2**10, 2**10))

# score: {-1:1} measure of the structural similarity between the images
score, diff = compare_ssim(img_a, img_b, full=True)
print(score)

如果其他人对更强大的比较图像相似性的方法感兴趣,我将使用Tensorflow测量和可视化相似图像的教程和web应用程序放在一起。

通过计算均方误差,numpy有一个简单而快速的解决方案:

before = np.array(get_picture())
while True:
    now = np.array(get_picture())
    MSE = np.mean((now - before)**2)

    if  MSE > threshold:
        break

    before = now

我在工作中遇到了类似的问题,我正在重写我们的图像转换端点,我想检查新版本是否与旧版本产生相同或几乎相同的输出。所以我写了这个:

https://github.com/nicolashahn/diffimg

它对相同大小的图像进行操作,并在每个像素级别上测量每个通道的值的差异:R, G, B(, a),取这些通道的平均差值,然后对所有像素的差值进行平均,并返回一个比率。

例如,有一张10x10的白色像素的图像,而同一张图像只有一个像素变成了红色,该像素处的差异是1/3或0.33……(RGB 0,0,0 vs 255,0,0)并且在所有其他像素为0。总共100像素,0.33…/100 =一个~0.33%的图像差异。

我相信这将非常适合OP的项目(我意识到这是一个非常老的帖子,但张贴为未来的StackOverflowers谁也想用python比较图像)。