这是我想做的:

我定期用网络摄像头拍照。就像时间流逝一样。然而,如果没有什么真正的改变,也就是说,图片看起来几乎相同,我不想存储最新的快照。

我想有某种方法可以量化这种差异,我必须根据经验确定一个阈值。

我追求的是简单而不是完美。 我用的是python。


当前回答

我在工作中遇到了类似的问题,我正在重写我们的图像转换端点,我想检查新版本是否与旧版本产生相同或几乎相同的输出。所以我写了这个:

https://github.com/nicolashahn/diffimg

它对相同大小的图像进行操作,并在每个像素级别上测量每个通道的值的差异:R, G, B(, a),取这些通道的平均差值,然后对所有像素的差值进行平均,并返回一个比率。

例如,有一张10x10的白色像素的图像,而同一张图像只有一个像素变成了红色,该像素处的差异是1/3或0.33……(RGB 0,0,0 vs 255,0,0)并且在所有其他像素为0。总共100像素,0.33…/100 =一个~0.33%的图像差异。

我相信这将非常适合OP的项目(我意识到这是一个非常老的帖子,但张贴为未来的StackOverflowers谁也想用python比较图像)。

其他回答

推土机的距离可能正是你所需要的。 不过,要实时实现它可能有点重。

给出的大多数答案都不涉及照明水平。

在进行比较之前,我首先将图像归一化到标准的光照水平。

I have been having a lot of luck with jpg images taken with the same camera on a tripod by (1) simplifying greatly (like going from 3000 pixels wide to 100 pixels wide or even fewer) (2) flattening each jpg array into a single vector (3) pairwise correlating sequential images with a simple correlate algorithm to get correlation coefficient (4) squaring correlation coefficient to get r-square (i.e fraction of variability in one image explained by variation in the next) (5) generally in my application if r-square < 0.9, I say the two images are different and something happened in between.

这是强大的和快速的在我的实现(Mathematica 7)

这是值得玩转的部分,你感兴趣的图像,并通过裁剪所有的图像到那个小区域,否则一个远离相机但重要的变化将被错过。

我不知道如何使用Python,但我确信它也有相关性,不是吗?

我特别要解决的问题是如何计算它们是否“足够不同”。我假设你能弄清楚如何一个一个地减去像素。

首先,我将取一堆没有任何变化的图像,并找出任何像素变化的最大量,仅仅是因为捕获的变化、成像系统中的噪声、JPEG压缩工件和照明的每时每刻的变化。也许你会发现,即使没有任何移动,1或2位的差异也是可以预期的。

对于“真实”测试,你需要一个这样的标准:

如果最多P个像素的差异不超过E,则相同。

所以,如果E = 0.02, P = 1000,这可能意味着(大约)如果任何单个像素改变超过5个单位(假设8位图像),或者如果超过1000个像素有任何错误,这将是“不同的”。

这主要是一种很好的“分类”技术,用于快速识别足够接近而不需要进一步检查的图像。“失败”的图像可能更多的是一种更复杂/昂贵的技术,例如,如果相机抖动,或者对光线变化更健壮,就不会产生假阳性。

I run an open source project, OpenImageIO, that contains a utility called "idiff" that compares differences with thresholds like this (even more elaborate, actually). Even if you don't want to use this software, you may want to look at the source to see how we did it. It's used commercially quite a bit and this thresholding technique was developed so that we could have a test suite for rendering and image processing software, with "reference images" that might have small differences from platform-to-platform or as we made minor tweaks to tha algorithms, so we wanted a "match within tolerance" operation.

有很多指标可以用来评估两张图片是否像/有多像。

这里我就不讲代码了,因为我认为这应该是一个科学问题,而不是技术问题。

一般来说,问题与人类对图像的感知有关,因此每种算法都有其对人类视觉系统特征的支持。

经典方法有:

可见差异预测器:一种评估图像保真度的算法(https://www.spiedigitallibrary.org/conference-proceedings-of-spie/1666/0000/Visible-differences-predictor--an-algorithm-for-the-assessment-of/10.1117/12.135952.short?SSO=1)

图像质量评估:从错误可见性到结构相似性(http://www.cns.nyu.edu/pub/lcv/wang03-reprint.pdf)

FSIM:一种用于图像质量评估的特征相似度指数(https://www4.comp.polyu.edu.hk/~cslzhang/IQA/TIP_IQA_FSIM.pdf)

其中,SSIM (Image Quality Assessment: From Error Visibility to Structural Similarity)是最容易计算的,其开销也较小,另一篇论文《基于梯度相似度的图像质量评估》(https://www.semanticscholar.org/paper/Image-Quality-Assessment-Based-on-Gradient-Liu-Lin/2b819bef80c02d5d4cb56f27b202535e119df988)也有报道。

还有很多其他的方法。如果你对艺术感兴趣或真正关心,可以在谷歌Scholar上搜索“视觉差异”、“图像质量评估”等。