这是我想做的:

我定期用网络摄像头拍照。就像时间流逝一样。然而,如果没有什么真正的改变,也就是说,图片看起来几乎相同,我不想存储最新的快照。

我想有某种方法可以量化这种差异,我必须根据经验确定一个阈值。

我追求的是简单而不是完美。 我用的是python。


当前回答

我在工作中遇到了类似的问题,我正在重写我们的图像转换端点,我想检查新版本是否与旧版本产生相同或几乎相同的输出。所以我写了这个:

https://github.com/nicolashahn/diffimg

它对相同大小的图像进行操作,并在每个像素级别上测量每个通道的值的差异:R, G, B(, a),取这些通道的平均差值,然后对所有像素的差值进行平均,并返回一个比率。

例如,有一张10x10的白色像素的图像,而同一张图像只有一个像素变成了红色,该像素处的差异是1/3或0.33……(RGB 0,0,0 vs 255,0,0)并且在所有其他像素为0。总共100像素,0.33…/100 =一个~0.33%的图像差异。

我相信这将非常适合OP的项目(我意识到这是一个非常老的帖子,但张贴为未来的StackOverflowers谁也想用python比较图像)。

其他回答

如果现在回复太晚,我很抱歉,但因为我一直在做类似的事情,我想我可以在某种程度上做出贡献。

也许在OpenCV中你可以使用模板匹配。假设你用的是摄像头

简化图像(可能是阈值?) 应用模板匹配和检查max_val与minMaxLoc

提示:max_val(或min_val取决于所使用的方法)将为您提供数字,较大的数字。为了获得百分比上的差异,使用与相同图像匹配的模板—结果将是100%。

举例的伪代码:

previous_screenshot = ...
current_screenshot = ...

# simplify both images somehow

# get the 100% corresponding value
res = matchTemplate(previous_screenshot, previous_screenshot, TM_CCOEFF)
_, hundred_p_val, _, _ = minMaxLoc(res)

# hundred_p_val is now the 100%

res = matchTemplate(previous_screenshot, current_screenshot, TM_CCOEFF)
_, max_val, _, _ = minMaxLoc(res)

difference_percentage = max_val / hundred_p_val

# the tolerance is now up to you

希望能有所帮助。

一个简单的解决方案:

将图像编码为jpeg格式,并寻找文件大小的实质性变化。

我曾经用视频缩略图实现过类似的东西,并且取得了很大的成功和可伸缩性。

两种流行且相对简单的方法是:(a)已经提出的欧几里得距离,或(b)标准化互相关。与简单的互相关相比,归一化互相关对光照变化的影响明显更强。维基百科给出了一个标准化互相关的公式。更复杂的方法也存在,但它们需要更多的工作。

使用numpy-like语法,

dist_euclidean = sqrt(sum((i1 - i2)^2)) / i1.size

dist_manhattan = sum(abs(i1 - i2)) / i1.size

dist_ncc = sum( (i1 - mean(i1)) * (i2 - mean(i2)) ) / (
  (i1.size - 1) * stdev(i1) * stdev(i2) )

假设i1和i2为二维灰度图像阵列。

使用SSIM测量两幅图像之间的结构相似指数度量。

给出的大多数答案都不涉及照明水平。

在进行比较之前,我首先将图像归一化到标准的光照水平。