这是我想做的:
我定期用网络摄像头拍照。就像时间流逝一样。然而,如果没有什么真正的改变,也就是说,图片看起来几乎相同,我不想存储最新的快照。
我想有某种方法可以量化这种差异,我必须根据经验确定一个阈值。
我追求的是简单而不是完美。 我用的是python。
这是我想做的:
我定期用网络摄像头拍照。就像时间流逝一样。然而,如果没有什么真正的改变,也就是说,图片看起来几乎相同,我不想存储最新的快照。
我想有某种方法可以量化这种差异,我必须根据经验确定一个阈值。
我追求的是简单而不是完美。 我用的是python。
当前回答
另一个衡量两张图片相似度的好方法是:
import sys
from skimage.measure import compare_ssim
from skimage.transform import resize
from scipy.ndimage import imread
# get two images - resize both to 1024 x 1024
img_a = resize(imread(sys.argv[1]), (2**10, 2**10))
img_b = resize(imread(sys.argv[2]), (2**10, 2**10))
# score: {-1:1} measure of the structural similarity between the images
score, diff = compare_ssim(img_a, img_b, full=True)
print(score)
如果其他人对更强大的比较图像相似性的方法感兴趣,我将使用Tensorflow测量和可视化相似图像的教程和web应用程序放在一起。
其他回答
另一个衡量两张图片相似度的好方法是:
import sys
from skimage.measure import compare_ssim
from skimage.transform import resize
from scipy.ndimage import imread
# get two images - resize both to 1024 x 1024
img_a = resize(imread(sys.argv[1]), (2**10, 2**10))
img_b = resize(imread(sys.argv[2]), (2**10, 2**10))
# score: {-1:1} measure of the structural similarity between the images
score, diff = compare_ssim(img_a, img_b, full=True)
print(score)
如果其他人对更强大的比较图像相似性的方法感兴趣,我将使用Tensorflow测量和可视化相似图像的教程和web应用程序放在一起。
如果现在回复太晚,我很抱歉,但因为我一直在做类似的事情,我想我可以在某种程度上做出贡献。
也许在OpenCV中你可以使用模板匹配。假设你用的是摄像头
简化图像(可能是阈值?) 应用模板匹配和检查max_val与minMaxLoc
提示:max_val(或min_val取决于所使用的方法)将为您提供数字,较大的数字。为了获得百分比上的差异,使用与相同图像匹配的模板—结果将是100%。
举例的伪代码:
previous_screenshot = ...
current_screenshot = ...
# simplify both images somehow
# get the 100% corresponding value
res = matchTemplate(previous_screenshot, previous_screenshot, TM_CCOEFF)
_, hundred_p_val, _, _ = minMaxLoc(res)
# hundred_p_val is now the 100%
res = matchTemplate(previous_screenshot, current_screenshot, TM_CCOEFF)
_, max_val, _, _ = minMaxLoc(res)
difference_percentage = max_val / hundred_p_val
# the tolerance is now up to you
希望能有所帮助。
给出的大多数答案都不涉及照明水平。
在进行比较之前,我首先将图像归一化到标准的光照水平。
import os
from PIL import Image
from PIL import ImageFile
import imagehash
#just use to the size diferent picture
def compare_image(img_file1, img_file2):
if img_file1 == img_file2:
return True
fp1 = open(img_file1, 'rb')
fp2 = open(img_file2, 'rb')
img1 = Image.open(fp1)
img2 = Image.open(fp2)
ImageFile.LOAD_TRUNCATED_IMAGES = True
b = img1 == img2
fp1.close()
fp2.close()
return b
#through picturu hash to compare
def get_hash_dict(dir):
hash_dict = {}
image_quantity = 0
for _, _, files in os.walk(dir):
for i, fileName in enumerate(files):
with open(dir + fileName, 'rb') as fp:
hash_dict[dir + fileName] = imagehash.average_hash(Image.open(fp))
image_quantity += 1
return hash_dict, image_quantity
def compare_image_with_hash(image_file_name_1, image_file_name_2, max_dif=0):
"""
max_dif: The maximum hash difference is allowed, the smaller and more accurate, the minimum is 0.
recommend to use
"""
ImageFile.LOAD_TRUNCATED_IMAGES = True
hash_1 = None
hash_2 = None
with open(image_file_name_1, 'rb') as fp:
hash_1 = imagehash.average_hash(Image.open(fp))
with open(image_file_name_2, 'rb') as fp:
hash_2 = imagehash.average_hash(Image.open(fp))
dif = hash_1 - hash_2
if dif < 0:
dif = -dif
if dif <= max_dif:
return True
else:
return False
def compare_image_dir_with_hash(dir_1, dir_2, max_dif=0):
"""
max_dif: The maximum hash difference is allowed, the smaller and more accurate, the minimum is 0.
"""
ImageFile.LOAD_TRUNCATED_IMAGES = True
hash_dict_1, image_quantity_1 = get_hash_dict(dir_1)
hash_dict_2, image_quantity_2 = get_hash_dict(dir_2)
if image_quantity_1 > image_quantity_2:
tmp = image_quantity_1
image_quantity_1 = image_quantity_2
image_quantity_2 = tmp
tmp = hash_dict_1
hash_dict_1 = hash_dict_2
hash_dict_2 = tmp
result_dict = {}
for k in hash_dict_1.keys():
result_dict[k] = None
for dif_i in range(0, max_dif + 1):
have_none = False
for k_1 in result_dict.keys():
if result_dict.get(k_1) is None:
have_none = True
if not have_none:
return result_dict
for k_1, v_1 in hash_dict_1.items():
for k_2, v_2 in hash_dict_2.items():
sub = (v_1 - v_2)
if sub < 0:
sub = -sub
if sub == dif_i and result_dict.get(k_1) is None:
result_dict[k_1] = k_2
break
return result_dict
def main():
print(compare_image('image1\\815.jpg', 'image2\\5.jpg'))
print(compare_image_with_hash('image1\\815.jpg', 'image2\\5.jpg', 7))
r = compare_image_dir_with_hash('image1\\', 'image2\\', 10)
for k in r.keys():
print(k, r.get(k))
if __name__ == '__main__':
main()
输出: 假 真正的 image2 jpg image1 5. \ \ 815. jpg image2 jpg image1 6. \ \ 819. jpg image2 jpg image1 7. \ \ 900. jpg image2 jpg image1 8. \ \ 998. jpg image2 jpg image1 9. \ \ 1012. jpg 示例图片: 815. jpg 5. jpg
看看Haar小波是如何由isk-daemon实现的。你可以使用它的imgdb c++代码来实时计算图像之间的差异:
disk -daemon是一个开源的数据库服务器,能够将基于内容的(可视的)图像搜索添加到任何与图像相关的网站或软件。 这项技术允许任何与图像相关的网站或软件的用户在小部件上绘制他们想要查找的图像,并让网站回复他们最相似的图像或简单地在每个图像详细页面请求更多相似的照片。