这是我想做的:

我定期用网络摄像头拍照。就像时间流逝一样。然而,如果没有什么真正的改变,也就是说,图片看起来几乎相同,我不想存储最新的快照。

我想有某种方法可以量化这种差异,我必须根据经验确定一个阈值。

我追求的是简单而不是完美。 我用的是python。


当前回答

一种更有原则的方法是使用全局描述符来比较图像,比如GIST或CENTRIST。这里描述的哈希函数也提供了类似的解决方案。

其他回答

I have been having a lot of luck with jpg images taken with the same camera on a tripod by (1) simplifying greatly (like going from 3000 pixels wide to 100 pixels wide or even fewer) (2) flattening each jpg array into a single vector (3) pairwise correlating sequential images with a simple correlate algorithm to get correlation coefficient (4) squaring correlation coefficient to get r-square (i.e fraction of variability in one image explained by variation in the next) (5) generally in my application if r-square < 0.9, I say the two images are different and something happened in between.

这是强大的和快速的在我的实现(Mathematica 7)

这是值得玩转的部分,你感兴趣的图像,并通过裁剪所有的图像到那个小区域,否则一个远离相机但重要的变化将被错过。

我不知道如何使用Python,但我确信它也有相关性,不是吗?

有很多指标可以用来评估两张图片是否像/有多像。

这里我就不讲代码了,因为我认为这应该是一个科学问题,而不是技术问题。

一般来说,问题与人类对图像的感知有关,因此每种算法都有其对人类视觉系统特征的支持。

经典方法有:

可见差异预测器:一种评估图像保真度的算法(https://www.spiedigitallibrary.org/conference-proceedings-of-spie/1666/0000/Visible-differences-predictor--an-algorithm-for-the-assessment-of/10.1117/12.135952.short?SSO=1)

图像质量评估:从错误可见性到结构相似性(http://www.cns.nyu.edu/pub/lcv/wang03-reprint.pdf)

FSIM:一种用于图像质量评估的特征相似度指数(https://www4.comp.polyu.edu.hk/~cslzhang/IQA/TIP_IQA_FSIM.pdf)

其中,SSIM (Image Quality Assessment: From Error Visibility to Structural Similarity)是最容易计算的,其开销也较小,另一篇论文《基于梯度相似度的图像质量评估》(https://www.semanticscholar.org/paper/Image-Quality-Assessment-Based-on-Gradient-Liu-Lin/2b819bef80c02d5d4cb56f27b202535e119df988)也有报道。

还有很多其他的方法。如果你对艺术感兴趣或真正关心,可以在谷歌Scholar上搜索“视觉差异”、“图像质量评估”等。

你可以计算这两个图像的直方图,然后计算Bhattacharyya系数,这是一个非常快速的算法,我已经用它来检测板球视频中的镜头变化(在C中使用openCV)

可以尝试的小事:

将两个图像重新采样为小的缩略图(例如64 x 64),并将缩略图与某个阈值逐像素进行比较。如果原始图像几乎相同,重新采样的缩略图将非常相似,甚至完全相同。这种方法可以处理特别是在低光场景中可能出现的噪音。如果你调成灰度,效果可能会更好。

我认为你可以简单地计算两幅图像亮度之间的欧几里得距离(即平方根(像素对像素的差异平方和)),如果这低于某个经验阈值,就认为它们相等。你最好包装一个C函数。