是否有一种直接的方法将CSV文件的内容导入到记录数组中,就像R的read.table(), read.delim()和read.csv()将数据导入到R数据框架中一样?
或者我应该使用csv.reader(),然后应用numpy.core.records.fromrecords()?
是否有一种直接的方法将CSV文件的内容导入到记录数组中,就像R的read.table(), read.delim()和read.csv()将数据导入到R数据框架中一样?
或者我应该使用csv.reader(),然后应用numpy.core.records.fromrecords()?
当前回答
In [329]: %time my_data = genfromtxt('one.csv', delimiter=',')
CPU times: user 19.8 s, sys: 4.58 s, total: 24.4 s
Wall time: 24.4 s
In [330]: %time df = pd.read_csv("one.csv", skiprows=20)
CPU times: user 1.06 s, sys: 312 ms, total: 1.38 s
Wall time: 1.38 s
其他回答
这件作品很有魅力……
import csv
with open("data.csv", 'r') as f:
data = list(csv.reader(f, delimiter=";"))
import numpy as np
data = np.array(data, dtype=np.float)
使用numpy.genfromtxt(),将分隔符kwarg设置为逗号:
from numpy import genfromtxt
my_data = genfromtxt('my_file.csv', delimiter=',')
您可以使用此代码将CSV文件数据发送到数组中:
import numpy as np
csv = np.genfromtxt('test.csv', delimiter=",")
print(csv)
这是最简单的方法:
import csv
with open('testfile.csv', newline='') as csvfile:
data = list(csv.reader(csvfile))
现在数据中的每个条目都是一个记录,表示为一个数组。你有一个二维数组。这节省了我很多时间。
我试了一下:
import pandas as p
import numpy as n
closingValue = p.read_csv("<FILENAME>", usecols=[4], dtype=float)
print(closingValue)