是否有一种直接的方法将CSV文件的内容导入到记录数组中,就像R的read.table(), read.delim()和read.csv()将数据导入到R数据框架中一样?

或者我应该使用csv.reader(),然后应用numpy.core.records.fromrecords()?


当前回答

这是最简单的方法:

import csv
with open('testfile.csv', newline='') as csvfile:
    data = list(csv.reader(csvfile))

现在数据中的每个条目都是一个记录,表示为一个数组。你有一个二维数组。这节省了我很多时间。

其他回答

您可以使用此代码将CSV文件数据发送到数组中:

import numpy as np
csv = np.genfromtxt('test.csv', delimiter=",")
print(csv)

我建议使用表(pip3 install tables)。您可以使用pandas将.csv文件保存到.h5。

import pandas as pd
data = pd.read_csv("dataset.csv")
store = pd.HDFStore('dataset.h5')
store['mydata'] = data
store.close()

然后,即使是大量的数据,您也可以轻松地用更少的时间将数据加载到NumPy数组中。

import pandas as pd
store = pd.HDFStore('dataset.h5')
data = store['mydata']
store.close()

# Data in NumPy format
data = data.values

使用numpy.loadtxt

一个非常简单的方法。但它要求所有元素都是float (int等)

import numpy as np 
data = np.loadtxt('c:\\1.csv',delimiter=',',skiprows=0)  

这是一个非常简单的任务,最好的方法如下

import pandas as pd
import numpy as np


df = pd.read_csv(r'C:\Users\Ron\Desktop\Clients.csv')   #read the file (put 'r' before the path string to address any special characters in the file such as \). Don't forget to put the file name at the end of the path + ".csv"

print(df)`

y = np.array(df)

我试了一下:

from numpy import genfromtxt
genfromtxt(fname = dest_file, dtype = (<whatever options>))

对比:

import csv
import numpy as np
with open(dest_file,'r') as dest_f:
    data_iter = csv.reader(dest_f,
                           delimiter = delimiter,
                           quotechar = '"')
    data = [data for data in data_iter]
data_array = np.asarray(data, dtype = <whatever options>)

对460万行约70列进行了分析,发现NumPy路径花费了2分16秒,csv-list理解方法花费了13秒。

我会推荐csv-list理解方法,因为它很可能依赖于预编译的库,而不是像NumPy那样依赖解释器。我怀疑pandas方法也有类似的解释器开销。