是否有一种直接的方法将CSV文件的内容导入到记录数组中,就像R的read.table(), read.delim()和read.csv()将数据导入到R数据框架中一样?
或者我应该使用csv.reader(),然后应用numpy.core.records.fromrecords()?
是否有一种直接的方法将CSV文件的内容导入到记录数组中,就像R的read.table(), read.delim()和read.csv()将数据导入到R数据框架中一样?
或者我应该使用csv.reader(),然后应用numpy.core.records.fromrecords()?
当前回答
这是最简单的方法:
import csv
with open('testfile.csv', newline='') as csvfile:
data = list(csv.reader(csvfile))
现在数据中的每个条目都是一个记录,表示为一个数组。你有一个二维数组。这节省了我很多时间。
其他回答
我试了一下:
import pandas as p
import numpy as n
closingValue = p.read_csv("<FILENAME>", usecols=[4], dtype=float)
print(closingValue)
我建议使用表(pip3 install tables)。您可以使用pandas将.csv文件保存到.h5。
import pandas as pd
data = pd.read_csv("dataset.csv")
store = pd.HDFStore('dataset.h5')
store['mydata'] = data
store.close()
然后,即使是大量的数据,您也可以轻松地用更少的时间将数据加载到NumPy数组中。
import pandas as pd
store = pd.HDFStore('dataset.h5')
data = store['mydata']
store.close()
# Data in NumPy format
data = data.values
这件作品很有魅力……
import csv
with open("data.csv", 'r') as f:
data = list(csv.reader(f, delimiter=";"))
import numpy as np
data = np.array(data, dtype=np.float)
使用numpy.loadtxt
一个非常简单的方法。但它要求所有元素都是float (int等)
import numpy as np
data = np.loadtxt('c:\\1.csv',delimiter=',',skiprows=0)
这是最简单的方法:
import csv
with open('testfile.csv', newline='') as csvfile:
data = list(csv.reader(csvfile))
现在数据中的每个条目都是一个记录,表示为一个数组。你有一个二维数组。这节省了我很多时间。