是否有一种直接的方法将CSV文件的内容导入到记录数组中,就像R的read.table(), read.delim()和read.csv()将数据导入到R数据框架中一样?

或者我应该使用csv.reader(),然后应用numpy.core.records.fromrecords()?


当前回答

这是最简单的方法:

import csv
with open('testfile.csv', newline='') as csvfile:
    data = list(csv.reader(csvfile))

现在数据中的每个条目都是一个记录,表示为一个数组。你有一个二维数组。这节省了我很多时间。

其他回答

我试了一下:

import pandas as p
import numpy as n

closingValue = p.read_csv("<FILENAME>", usecols=[4], dtype=float)
print(closingValue)

我建议使用表(pip3 install tables)。您可以使用pandas将.csv文件保存到.h5。

import pandas as pd
data = pd.read_csv("dataset.csv")
store = pd.HDFStore('dataset.h5')
store['mydata'] = data
store.close()

然后,即使是大量的数据,您也可以轻松地用更少的时间将数据加载到NumPy数组中。

import pandas as pd
store = pd.HDFStore('dataset.h5')
data = store['mydata']
store.close()

# Data in NumPy format
data = data.values

这件作品很有魅力……

import csv
with open("data.csv", 'r') as f:
    data = list(csv.reader(f, delimiter=";"))

import numpy as np
data = np.array(data, dtype=np.float)

使用numpy.loadtxt

一个非常简单的方法。但它要求所有元素都是float (int等)

import numpy as np 
data = np.loadtxt('c:\\1.csv',delimiter=',',skiprows=0)  

这是最简单的方法:

import csv
with open('testfile.csv', newline='') as csvfile:
    data = list(csv.reader(csvfile))

现在数据中的每个条目都是一个记录,表示为一个数组。你有一个二维数组。这节省了我很多时间。