是否有一种直接的方法将CSV文件的内容导入到记录数组中,就像R的read.table(), read.delim()和read.csv()将数据导入到R数据框架中一样?
或者我应该使用csv.reader(),然后应用numpy.core.records.fromrecords()?
是否有一种直接的方法将CSV文件的内容导入到记录数组中,就像R的read.table(), read.delim()和read.csv()将数据导入到R数据框架中一样?
或者我应该使用csv.reader(),然后应用numpy.core.records.fromrecords()?
当前回答
我试了一下:
import pandas as p
import numpy as n
closingValue = p.read_csv("<FILENAME>", usecols=[4], dtype=float)
print(closingValue)
其他回答
使用numpy.loadtxt
一个非常简单的方法。但它要求所有元素都是float (int等)
import numpy as np
data = np.loadtxt('c:\\1.csv',delimiter=',',skiprows=0)
您可以使用此代码将CSV文件数据发送到数组中:
import numpy as np
csv = np.genfromtxt('test.csv', delimiter=",")
print(csv)
我试了一下:
from numpy import genfromtxt
genfromtxt(fname = dest_file, dtype = (<whatever options>))
对比:
import csv
import numpy as np
with open(dest_file,'r') as dest_f:
data_iter = csv.reader(dest_f,
delimiter = delimiter,
quotechar = '"')
data = [data for data in data_iter]
data_array = np.asarray(data, dtype = <whatever options>)
对460万行约70列进行了分析,发现NumPy路径花费了2分16秒,csv-list理解方法花费了13秒。
我会推荐csv-list理解方法,因为它很可能依赖于预编译的库,而不是像NumPy那样依赖解释器。我怀疑pandas方法也有类似的解释器开销。
使用pandas.read_csv:
import pandas as pd
df = pd.read_csv('myfile.csv', sep=',', header=None)
print(df.values)
array([[ 1. , 2. , 3. ],
[ 4. , 5.5, 6. ]])
这就提供了一个pandas DataFrame,它提供了许多numpy记录数组无法直接提供的有用的数据操作函数。
DataFrame是一个2维标记数据结构,列为 可能是不同的类型。你可以把它想象成一个电子表格 SQL表……
我还推荐numpy.genfromtxt。然而,由于问题要求的是记录数组,而不是普通数组,因此需要在genfromtxt调用中添加dtype=None参数:
import numpy as np
np.genfromtxt('myfile.csv', delimiter=',')
对于下面的'myfile.csv':
1.0, 2, 3
4, 5.5, 6
上面的代码给出了一个数组:
array([[ 1. , 2. , 3. ],
[ 4. , 5.5, 6. ]])
and
np.genfromtxt('myfile.csv', delimiter=',', dtype=None)
给出一个记录数组:
array([(1.0, 2.0, 3), (4.0, 5.5, 6)],
dtype=[('f0', '<f8'), ('f1', '<f8'), ('f2', '<i4')])
这样做的好处是可以轻松导入具有多种数据类型(包括字符串)的文件。
还可以尝试recfromcsv(),它可以猜测数据类型并返回正确格式化的记录数组。