如何找到在Linux上运行的C++应用程序中运行缓慢的代码区域?


当前回答

我会使用Valgrind和Callgrind作为我的仿形工具套件的基础。重要的是,Valgrind基本上是一台虚拟机:

(维基百科)Valgrind本质上是虚拟的机器使用准时制(JIT)编译技术,包括动态重新编译。没有来自的内容原始程序始终运行直接在主机处理器上。相反,Valgrind首先翻译将程序转换为临时的、更简单的形式称为中间表示(IR)是处理器中性的,转换后,工具(见下文)可以自由使用无论它想要什么样的转变在Valgrind翻译之前IR返回到机器代码中主机处理器运行它。

Callgrind是一个基于此的剖析器。主要的好处是,您不必运行应用程序数小时就能获得可靠的结果。因为Callgrind是一个非探测型剖面仪,所以即使一秒钟的运行也足以获得可靠的结果。

另一个基于Valgrind的工具是Massif。我使用它来分析堆内存使用情况。它工作得很好。它的作用是为您提供内存使用情况的快照--详细信息What hold What percentage of memory,and WHO has put it there。这些信息在应用程序运行的不同时间点可用。

其他回答

在工作中,我们有一个非常好的工具,它可以帮助我们监控我们想要的日程安排。这已多次有用。

它是用C++编写的,必须根据您的需要进行定制。不幸的是,我不能共享代码,只有概念。您使用一个包含时间戳和事件ID的“大”易失性缓冲区,可以在死后或停止日志系统后转储(例如,将其转储到文件中)。

您检索包含所有数据的所谓大缓冲区,一个小接口解析它并显示带有名称(up/down+value)的事件,就像示波器使用颜色(在.hpp文件中配置)所做的那样。

您可以自定义生成的事件数量,以仅关注您所需的内容。它帮助我们解决了调度问题,同时根据每秒记录的事件数量消耗了所需的CPU数量。

您需要3个文件:

toolname.hpp // interface
toolname.cpp // code
tool_events_id.hpp // Events ID

其概念是在tool_events_id.hpp中定义如下事件:

// EVENT_NAME                         ID      BEGIN_END BG_COLOR NAME
#define SOCK_PDU_RECV_D               0x0301  //@D00301 BGEEAAAA # TX_PDU_Recv
#define SOCK_PDU_RECV_F               0x0302  //@F00301 BGEEAAAA # TX_PDU_Recv

您还可以在toolname.hpp中定义一些函数:

#define LOG_LEVEL_ERROR 0
#define LOG_LEVEL_WARN 1
// ...

void init(void);
void probe(id,payload);
// etc

代码中可以使用的任何位置:

toolname<LOG_LEVEL>::log(EVENT_NAME,VALUE);

probe函数使用几条装配线尽快检索时钟时间戳,然后在缓冲区中设置一个条目。我们还有一个原子增量来安全地找到存储日志事件的索引。当然,缓冲区是圆形的。

希望这个想法不会因为缺少示例代码而混淆。

对于单线程程序,您可以使用igprof,The Ignorminous Profiler:https://igprof.org/ .

这是一个采样分析器,沿着。。。长的Mike Dunlavey的回答,它将把结果包装在一个可浏览的调用堆栈树中,用每个函数(无论是累积的还是每个函数)花费的时间或内存进行注释。

编译和链接代码并运行可执行文件时,请使用-pg标志。执行此程序时,分析数据收集在文件a.out中。有两种不同类型的分析

1-平面轮廓:通过运行命令gprog--flat profile a.out,可以获得以下数据-该功能所花费的总时间的百分比,-在包括和排除对子函数的调用的函数中花费了多少秒,-呼叫的数量,-每次通话的平均时间。

2-图形分析使用命令gprof--graph a.out获取每个函数的以下数据,其中包括-在每个部分中,一个函数都标有索引编号。-在函数上方,有一个调用该函数的函数列表。-在函数下面,有一个函数调用的函数列表。

要获取更多信息,请查看https://sourceware.org/binutils/docs-2.32/gprof/

如果没有一些选项,运行valgrind--tool=callgrind的答案并不完全。我们通常不希望在Valgrind下描述10分钟的缓慢启动时间,而希望在执行某些任务时描述我们的程序。

这就是我的建议。首先运行程序:

valgrind --tool=callgrind --dump-instr=yes -v --instr-atstart=no ./binary > tmp

现在,当它工作并且我们想要开始评测时,我们应该在另一个窗口中运行:

callgrind_control -i on

这将打开分析。若要关闭并停止整个任务,我们可以使用:

callgrind_control -k

现在,我们在当前目录中有一些名为callgrind.out.*的文件。要查看分析结果,请使用:

kcachegrind callgrind.out.*

我建议在下一个窗口中单击“Self”列标题,否则它会显示“main()”是最耗时的任务。“Self”显示每个函数本身花费的时间,而不是与依赖项一起花费的时间。

您可以使用iprof库:

https://gitlab.com/Neurochrom/iprof

https://github.com/Neurochrom/iprof

它是跨平台的,允许您不实时测量应用程序的性能。您甚至可以将其与实时图表相结合。完整免责声明:我是作者。