我试图修复python如何绘制我的数据。 说:

x = [0,5,9,10,15]
y = [0,1,2,3,4]

matplotlib.pyplot.plot(x,y)
matplotlib.pyplot.show()

x轴的刻度以5为间隔绘制。有没有办法让它显示1的间隔?


你可以使用plt.xticks显式地设置你想要标记的位置:

plt.xticks(np.arange(min(x), max(x)+1, 1.0))

例如,

import numpy as np
import matplotlib.pyplot as plt

x = [0,5,9,10,15]
y = [0,1,2,3,4]
plt.plot(x,y)
plt.xticks(np.arange(min(x), max(x)+1, 1.0))
plt.show()

(np。使用arange而不是Python的range函数,以防min(x)和max(x)是浮点数而不是整数。)


plt。Plot(或ax.plot)函数将自动设置默认的x和y限制。如果希望保留这些限制,而只是改变标记的步长,那么可以使用ax.get_xlim()来发现Matplotlib已经设置了哪些限制。

start, end = ax.get_xlim()
ax.xaxis.set_ticks(np.arange(start, end, stepsize))

默认的刻度格式化器应该能很好地将刻度值舍入为合理的有效数字。但是,如果希望对格式有更多的控制,可以定义自己的格式化程序。例如,

ax.xaxis.set_major_formatter(ticker.FormatStrFormatter('%0.1f'))

下面是一个可运行的例子:

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.ticker as ticker

x = [0,5,9,10,15]
y = [0,1,2,3,4]
fig, ax = plt.subplots()
ax.plot(x,y)
start, end = ax.get_xlim()
ax.xaxis.set_ticks(np.arange(start, end, 0.712123))
ax.xaxis.set_major_formatter(ticker.FormatStrFormatter('%0.1f'))
plt.show()

另一种方法是设置轴定位器:

import matplotlib.ticker as plticker

loc = plticker.MultipleLocator(base=1.0) # this locator puts ticks at regular intervals
ax.xaxis.set_major_locator(loc)

根据您的需要,有几种不同类型的定位器。

下面是一个完整的例子:

import matplotlib.pyplot as plt
import matplotlib.ticker as plticker

x = [0,5,9,10,15]
y = [0,1,2,3,4]
fig, ax = plt.subplots()
ax.plot(x,y)
loc = plticker.MultipleLocator(base=1.0) # this locator puts ticks at regular intervals
ax.xaxis.set_major_locator(loc)
plt.show()

这是一个老话题了,但我偶尔会遇到这个问题,然后做了这个功能。非常方便:

import matplotlib.pyplot as pp
import numpy as np

def resadjust(ax, xres=None, yres=None):
    """
    Send in an axis and I fix the resolution as desired.
    """

    if xres:
        start, stop = ax.get_xlim()
        ticks = np.arange(start, stop + xres, xres)
        ax.set_xticks(ticks)
    if yres:
        start, stop = ax.get_ylim()
        ticks = np.arange(start, stop + yres, yres)
        ax.set_yticks(ticks)

像这样控制刻度的一个警告是,一个人不再享受在添加一行后最大刻度的交互式自动更新。然后做

gca().set_ylim(top=new_top) # for example

并再次运行resadjust函数。


我想出了一个不优雅的解决方案。假设我们有X轴和X中每个点的标签列表。

Example:
import matplotlib.pyplot as plt

x = [0,1,2,3,4,5]
y = [10,20,15,18,7,19]
xlabels = ['jan','feb','mar','apr','may','jun']
Let's say that I want to show ticks labels only for 'feb' and 'jun'
xlabelsnew = []
for i in xlabels:
    if i not in ['feb','jun']:
        i = ' '
        xlabelsnew.append(i)
    else:
        xlabelsnew.append(i)
Good, now we have a fake list of labels. First, we plotted the original version.
plt.plot(x,y)
plt.xticks(range(0,len(x)),xlabels,rotation=45)
plt.show()
Now, the modified version.
plt.plot(x,y)
plt.xticks(range(0,len(x)),xlabelsnew,rotation=45)
plt.show()

这有点俗气,但到目前为止,这是我找到的最干净/最容易理解的例子。这句话来自这里SO的回答:

最干净的方法隐藏每n勾标签在matplotlib色条?

for label in ax.get_xticklabels()[::2]:
    label.set_visible(False)

然后你可以循环标签,根据你想要的密度将它们设置为可见或不可见。

编辑:注意,有时matplotlib设置标签== ",所以它可能看起来像一个标签不存在,而实际上它是,只是没有显示任何东西。为了确保你在循环实际可见的标签,你可以尝试:

visible_labels = [lab for lab in ax.get_xticklabels() if lab.get_visible() is True and lab.get_text() != '']
plt.setp(visible_labels[::2], visible=False)

我喜欢这个解决方案(来自Matplotlib绘图Cookbook):

import matplotlib.pyplot as plt
import matplotlib.ticker as ticker

x = [0,5,9,10,15]
y = [0,1,2,3,4]

tick_spacing = 1

fig, ax = plt.subplots(1,1)
ax.plot(x,y)
ax.xaxis.set_major_locator(ticker.MultipleLocator(tick_spacing))
plt.show()

这个解决方案让你通过给ticker.MultipleLocater()的数字显式控制刻度间距,允许自动确定限制,并且便于以后读取。


如果有人对一般的一行程序感兴趣,只需获取当前的刻度,并通过对每个其他刻度进行采样来使用它来设置新的刻度。

ax.set_xticks(ax.get_xticks()[::2])

xmarks=[i for i in range(1,length+1,1)]

plt.xticks(xmarks)

这对我很有效

如果你想要[1,5](1到5包括在内)之间的刻度,那么替换

length = 5

纯Python实现

下面是所需功能的纯python实现,它可以处理任何具有正、负或混合值的数值序列(int或float),并允许用户指定所需的步长:

import math

def computeTicks (x, step = 5):
    """
    Computes domain with given step encompassing series x
    @ params
    x    - Required - A list-like object of integers or floats
    step - Optional - Tick frequency
    """
    xMax, xMin = math.ceil(max(x)), math.floor(min(x))
    dMax, dMin = xMax + abs((xMax % step) - step) + (step if (xMax % step != 0) else 0), xMin - abs((xMin % step))
    return range(dMin, dMax, step)

样例输出

# Negative to Positive
series = [-2, 18, 24, 29, 43]
print(list(computeTicks(series)))

[-5, 0, 5, 10, 15, 20, 25, 30, 35, 40, 45]

# Negative to 0
series = [-30, -14, -10, -9, -3, 0]
print(list(computeTicks(series)))

[-30, -25, -20, -15, -10, -5, 0]

# 0 to Positive
series = [19, 23, 24, 27]
print(list(computeTicks(series)))

[15, 20, 25, 30]

# Floats
series = [1.8, 12.0, 21.2]
print(list(computeTicks(series)))

[0, 5, 10, 15, 20, 25]

# Step – 100
series = [118.3, 293.2, 768.1]
print(list(computeTicks(series, step = 100)))

[100, 200, 300, 400, 500, 600, 700, 800]

示例使用

import matplotlib.pyplot as plt

x = [0,5,9,10,15]
y = [0,1,2,3,4]
plt.plot(x,y)
plt.xticks(computeTicks(x))
plt.show()

注意,x轴的整数值之间均匀间隔为5,而y轴的间隔不同(matplotlib的默认行为,因为没有指定刻度)。


如果你只是想把间距设置为一个简单的一行和最小的样板:

plt.gca().xaxis.set_major_locator(plt.MultipleLocator(1))

对小蜱虫也很有效:

plt.gca().xaxis.set_minor_locator(plt.MultipleLocator(1))

有点满口,但很紧凑


因为上面的解决方案都不适用于我的用例,所以在这里我提供了一个使用None的解决方案,它可以适用于各种各样的场景。

下面是一个示例代码,它在X轴和Y轴上都产生了混乱的刻度。

# Note the super cluttered ticks on both X and Y axis.

# inputs
x = np.arange(1, 101)
y = x * np.log(x) 

fig = plt.figure()     # create figure
ax = fig.add_subplot(111)
ax.plot(x, y)
ax.set_xticks(x)        # set xtick values
ax.set_yticks(y)        # set ytick values

plt.show()

现在,我们用一个新的图来清理混乱,它只在x和y轴上显示一组稀疏的值作为刻度。

# inputs
x = np.arange(1, 101)
y = x * np.log(x)

fig = plt.figure()       # create figure
ax = fig.add_subplot(111)
ax.plot(x, y)

ax.set_xticks(x)
ax.set_yticks(y)

# which values need to be shown?
# here, we show every third value from `x` and `y`
show_every = 3

sparse_xticks = [None] * x.shape[0]
sparse_xticks[::show_every] = x[::show_every]

sparse_yticks = [None] * y.shape[0]
sparse_yticks[::show_every] = y[::show_every]

ax.set_xticklabels(sparse_xticks, fontsize=6)   # set sparse xtick values
ax.set_yticklabels(sparse_yticks, fontsize=6)   # set sparse ytick values

plt.show()

根据使用情况,可以简单地修改show_every并使用它为X或Y或两个轴取样刻度值,从而适应上面的代码。

如果这种基于步长的解决方案不适合,那么还可以以不规则的间隔填充sparse_xticks或sparse_yticks的值(如果需要的话)。


一般化的一行程序,只导入Numpy:

ax.set_xticks(np.arange(min(x),max(x),1))

在问题的背景下设置:

import numpy as np
import matplotlib.pyplot as plt 
fig, ax = plt.subplots()
x = [0,5,9,10,15]
y = [0,1,2,3,4]
ax.plot(x,y)
ax.set_xticks(np.arange(min(x),max(x),1))
plt.show()

工作原理:

图中,ax = plt.subplots()给出了包含坐标轴的ax对象。 np.arange(min(x),max(x),1)给出了一个区间为1的数组,从x的最小值到x的最大值。这是我们想要的新x刻度。 ax.set_xticks()改变ax对象上的刻度。


你可以循环标签,并显示或隐藏你想要的:

   for i, label in enumerate(ax.get_xticklabels()):
        if i % interval != 0:
            label.set_visible(False)