我试图修复python如何绘制我的数据。 说:
x = [0,5,9,10,15]
y = [0,1,2,3,4]
matplotlib.pyplot.plot(x,y)
matplotlib.pyplot.show()
x轴的刻度以5为间隔绘制。有没有办法让它显示1的间隔?
我试图修复python如何绘制我的数据。 说:
x = [0,5,9,10,15]
y = [0,1,2,3,4]
matplotlib.pyplot.plot(x,y)
matplotlib.pyplot.show()
x轴的刻度以5为间隔绘制。有没有办法让它显示1的间隔?
当前回答
这有点俗气,但到目前为止,这是我找到的最干净/最容易理解的例子。这句话来自这里SO的回答:
最干净的方法隐藏每n勾标签在matplotlib色条?
for label in ax.get_xticklabels()[::2]:
label.set_visible(False)
然后你可以循环标签,根据你想要的密度将它们设置为可见或不可见。
编辑:注意,有时matplotlib设置标签== ",所以它可能看起来像一个标签不存在,而实际上它是,只是没有显示任何东西。为了确保你在循环实际可见的标签,你可以尝试:
visible_labels = [lab for lab in ax.get_xticklabels() if lab.get_visible() is True and lab.get_text() != '']
plt.setp(visible_labels[::2], visible=False)
其他回答
xmarks=[i for i in range(1,length+1,1)]
plt.xticks(xmarks)
这对我很有效
如果你想要[1,5](1到5包括在内)之间的刻度,那么替换
length = 5
我想出了一个不优雅的解决方案。假设我们有X轴和X中每个点的标签列表。
Example:import matplotlib.pyplot as plt
x = [0,1,2,3,4,5]
y = [10,20,15,18,7,19]
xlabels = ['jan','feb','mar','apr','may','jun']
Let's say that I want to show ticks labels only for 'feb' and 'jun'
xlabelsnew = []
for i in xlabels:
if i not in ['feb','jun']:
i = ' '
xlabelsnew.append(i)
else:
xlabelsnew.append(i)
Good, now we have a fake list of labels. First, we plotted the original version.
plt.plot(x,y)
plt.xticks(range(0,len(x)),xlabels,rotation=45)
plt.show()
Now, the modified version.
plt.plot(x,y)
plt.xticks(range(0,len(x)),xlabelsnew,rotation=45)
plt.show()
这有点俗气,但到目前为止,这是我找到的最干净/最容易理解的例子。这句话来自这里SO的回答:
最干净的方法隐藏每n勾标签在matplotlib色条?
for label in ax.get_xticklabels()[::2]:
label.set_visible(False)
然后你可以循环标签,根据你想要的密度将它们设置为可见或不可见。
编辑:注意,有时matplotlib设置标签== ",所以它可能看起来像一个标签不存在,而实际上它是,只是没有显示任何东西。为了确保你在循环实际可见的标签,你可以尝试:
visible_labels = [lab for lab in ax.get_xticklabels() if lab.get_visible() is True and lab.get_text() != '']
plt.setp(visible_labels[::2], visible=False)
纯Python实现
下面是所需功能的纯python实现,它可以处理任何具有正、负或混合值的数值序列(int或float),并允许用户指定所需的步长:
import math
def computeTicks (x, step = 5):
"""
Computes domain with given step encompassing series x
@ params
x - Required - A list-like object of integers or floats
step - Optional - Tick frequency
"""
xMax, xMin = math.ceil(max(x)), math.floor(min(x))
dMax, dMin = xMax + abs((xMax % step) - step) + (step if (xMax % step != 0) else 0), xMin - abs((xMin % step))
return range(dMin, dMax, step)
样例输出
# Negative to Positive
series = [-2, 18, 24, 29, 43]
print(list(computeTicks(series)))
[-5, 0, 5, 10, 15, 20, 25, 30, 35, 40, 45]
# Negative to 0
series = [-30, -14, -10, -9, -3, 0]
print(list(computeTicks(series)))
[-30, -25, -20, -15, -10, -5, 0]
# 0 to Positive
series = [19, 23, 24, 27]
print(list(computeTicks(series)))
[15, 20, 25, 30]
# Floats
series = [1.8, 12.0, 21.2]
print(list(computeTicks(series)))
[0, 5, 10, 15, 20, 25]
# Step – 100
series = [118.3, 293.2, 768.1]
print(list(computeTicks(series, step = 100)))
[100, 200, 300, 400, 500, 600, 700, 800]
示例使用
import matplotlib.pyplot as plt
x = [0,5,9,10,15]
y = [0,1,2,3,4]
plt.plot(x,y)
plt.xticks(computeTicks(x))
plt.show()
注意,x轴的整数值之间均匀间隔为5,而y轴的间隔不同(matplotlib的默认行为,因为没有指定刻度)。
我喜欢这个解决方案(来自Matplotlib绘图Cookbook):
import matplotlib.pyplot as plt
import matplotlib.ticker as ticker
x = [0,5,9,10,15]
y = [0,1,2,3,4]
tick_spacing = 1
fig, ax = plt.subplots(1,1)
ax.plot(x,y)
ax.xaxis.set_major_locator(ticker.MultipleLocator(tick_spacing))
plt.show()
这个解决方案让你通过给ticker.MultipleLocater()的数字显式控制刻度间距,允许自动确定限制,并且便于以后读取。