我试图修复python如何绘制我的数据。 说:

x = [0,5,9,10,15]
y = [0,1,2,3,4]

matplotlib.pyplot.plot(x,y)
matplotlib.pyplot.show()

x轴的刻度以5为间隔绘制。有没有办法让它显示1的间隔?


当前回答

我想出了一个不优雅的解决方案。假设我们有X轴和X中每个点的标签列表。

Example:
import matplotlib.pyplot as plt

x = [0,1,2,3,4,5]
y = [10,20,15,18,7,19]
xlabels = ['jan','feb','mar','apr','may','jun']
Let's say that I want to show ticks labels only for 'feb' and 'jun'
xlabelsnew = []
for i in xlabels:
    if i not in ['feb','jun']:
        i = ' '
        xlabelsnew.append(i)
    else:
        xlabelsnew.append(i)
Good, now we have a fake list of labels. First, we plotted the original version.
plt.plot(x,y)
plt.xticks(range(0,len(x)),xlabels,rotation=45)
plt.show()
Now, the modified version.
plt.plot(x,y)
plt.xticks(range(0,len(x)),xlabelsnew,rotation=45)
plt.show()

其他回答

因为上面的解决方案都不适用于我的用例,所以在这里我提供了一个使用None的解决方案,它可以适用于各种各样的场景。

下面是一个示例代码,它在X轴和Y轴上都产生了混乱的刻度。

# Note the super cluttered ticks on both X and Y axis.

# inputs
x = np.arange(1, 101)
y = x * np.log(x) 

fig = plt.figure()     # create figure
ax = fig.add_subplot(111)
ax.plot(x, y)
ax.set_xticks(x)        # set xtick values
ax.set_yticks(y)        # set ytick values

plt.show()

现在,我们用一个新的图来清理混乱,它只在x和y轴上显示一组稀疏的值作为刻度。

# inputs
x = np.arange(1, 101)
y = x * np.log(x)

fig = plt.figure()       # create figure
ax = fig.add_subplot(111)
ax.plot(x, y)

ax.set_xticks(x)
ax.set_yticks(y)

# which values need to be shown?
# here, we show every third value from `x` and `y`
show_every = 3

sparse_xticks = [None] * x.shape[0]
sparse_xticks[::show_every] = x[::show_every]

sparse_yticks = [None] * y.shape[0]
sparse_yticks[::show_every] = y[::show_every]

ax.set_xticklabels(sparse_xticks, fontsize=6)   # set sparse xtick values
ax.set_yticklabels(sparse_yticks, fontsize=6)   # set sparse ytick values

plt.show()

根据使用情况,可以简单地修改show_every并使用它为X或Y或两个轴取样刻度值,从而适应上面的代码。

如果这种基于步长的解决方案不适合,那么还可以以不规则的间隔填充sparse_xticks或sparse_yticks的值(如果需要的话)。

一般化的一行程序,只导入Numpy:

ax.set_xticks(np.arange(min(x),max(x),1))

在问题的背景下设置:

import numpy as np
import matplotlib.pyplot as plt 
fig, ax = plt.subplots()
x = [0,5,9,10,15]
y = [0,1,2,3,4]
ax.plot(x,y)
ax.set_xticks(np.arange(min(x),max(x),1))
plt.show()

工作原理:

图中,ax = plt.subplots()给出了包含坐标轴的ax对象。 np.arange(min(x),max(x),1)给出了一个区间为1的数组,从x的最小值到x的最大值。这是我们想要的新x刻度。 ax.set_xticks()改变ax对象上的刻度。

我喜欢这个解决方案(来自Matplotlib绘图Cookbook):

import matplotlib.pyplot as plt
import matplotlib.ticker as ticker

x = [0,5,9,10,15]
y = [0,1,2,3,4]

tick_spacing = 1

fig, ax = plt.subplots(1,1)
ax.plot(x,y)
ax.xaxis.set_major_locator(ticker.MultipleLocator(tick_spacing))
plt.show()

这个解决方案让你通过给ticker.MultipleLocater()的数字显式控制刻度间距,允许自动确定限制,并且便于以后读取。

这有点俗气,但到目前为止,这是我找到的最干净/最容易理解的例子。这句话来自这里SO的回答:

最干净的方法隐藏每n勾标签在matplotlib色条?

for label in ax.get_xticklabels()[::2]:
    label.set_visible(False)

然后你可以循环标签,根据你想要的密度将它们设置为可见或不可见。

编辑:注意,有时matplotlib设置标签== ",所以它可能看起来像一个标签不存在,而实际上它是,只是没有显示任何东西。为了确保你在循环实际可见的标签,你可以尝试:

visible_labels = [lab for lab in ax.get_xticklabels() if lab.get_visible() is True and lab.get_text() != '']
plt.setp(visible_labels[::2], visible=False)

我想出了一个不优雅的解决方案。假设我们有X轴和X中每个点的标签列表。

Example:
import matplotlib.pyplot as plt

x = [0,1,2,3,4,5]
y = [10,20,15,18,7,19]
xlabels = ['jan','feb','mar','apr','may','jun']
Let's say that I want to show ticks labels only for 'feb' and 'jun'
xlabelsnew = []
for i in xlabels:
    if i not in ['feb','jun']:
        i = ' '
        xlabelsnew.append(i)
    else:
        xlabelsnew.append(i)
Good, now we have a fake list of labels. First, we plotted the original version.
plt.plot(x,y)
plt.xticks(range(0,len(x)),xlabels,rotation=45)
plt.show()
Now, the modified version.
plt.plot(x,y)
plt.xticks(range(0,len(x)),xlabelsnew,rotation=45)
plt.show()