我有以下代码来做到这一点,但我如何能做得更好?现在我认为它比嵌套循环更好,但是当您在列表理解中使用生成器时,它开始变得像perl一行程序。

day_count = (end_date - start_date).days + 1
for single_date in [d for d in (start_date + timedelta(n) for n in range(day_count)) if d <= end_date]:
    print strftime("%Y-%m-%d", single_date.timetuple())

笔记

我不是用这个来打印的。这只是为了演示。 start_date和end_date变量是datetime。date对象,因为我不需要时间戳。(它们将用于生成报告)。

样例输出

开始日期为2009-05-30,结束日期为2009-06-09:

2009-05-30
2009-05-31
2009-06-01
2009-06-02
2009-06-03
2009-06-04
2009-06-05
2009-06-06
2009-06-07
2009-06-08
2009-06-09

当前回答

一般来说,Pandas非常适合时间序列,并直接支持日期范围。

import pandas as pd
daterange = pd.date_range(start_date, end_date)

然后你可以循环daterrange来打印日期:

for single_date in daterange:
    print (single_date.strftime("%Y-%m-%d"))

它也有很多选择,让生活更轻松。例如,如果您只想要工作日,您只需交换bdate_range。看到http://pandas.pydata.org/pandas-docs/stable/timeseries.html generating-ranges-of-timestamps

Pandas的强大之处在于它的数据框架,它支持向量化操作(很像numpy),使得跨大量数据的操作非常快速和简单。

编辑: 你也可以完全跳过for循环,直接打印出来,这样更简单、更高效:

print(daterange)

其他回答

这可能更清楚:

from datetime import date, timedelta

start_date = date(2019, 1, 1)
end_date = date(2020, 1, 1)
delta = timedelta(days=1)
while start_date <= end_date:
    print(start_date.strftime("%Y-%m-%d"))
    start_date += delta
for i in range(16):
    print datetime.date.today() + datetime.timedelta(days=i)

如果你打算使用动态timedelta,那么你可以使用:

1. 使用while循环

def datetime_range(start: datetime, end: datetime, delta: timedelta) -> Generator[datetime, None, None]:
    while start <= end:
        yield start
        start += delta

2. 使用for循环

from datetime import datetime, timedelta
from typing import Generator


def datetime_range(start: datetime, end: datetime, delta: timedelta) -> Generator[datetime, None, None]:
    delta_units = int((end - start) / delta)

    for _ in range(delta_units + 1):
        yield start
        start += delta

3.如果你正在使用async/await

async def datetime_range(start: datetime, end: datetime, delta: timedelta) -> AsyncGenerator[datetime, None]:
    delta_units = int((end - start) / delta)

    for _ in range(delta_units + 1):
        yield start
        start += delta

4. 列表理解

def datetime_range(start: datetime, end: datetime, delta: timedelta) -> List[datetime]:
    delta_units = int((end - start) / delta)
    return [start + (delta * index) for index in range(delta_units + 1)]

那么1和2解可以简单地像这样使用

start = datetime(2020, 10, 10, 10, 00)
end = datetime(2022, 10, 10, 18, 00)
delta = timedelta(minutes=30)

result = [time_part for time_part in datetime_range(start, end, delta)]
# or 
for time_part in datetime_range(start, end, delta):
    print(time_part)

3- 3 / 3解决方案可以在异步上下文中使用。因为它运行一个异步生成器对象,该对象只能在异步上下文中使用

start = datetime(2020, 10, 10, 10, 00)
end = datetime(2022, 10, 10, 18, 00)
delta = timedelta(minutes=30)

result = [time_part async for time_part in datetime_range(start, end, delta)]

async for time_part in datetime_range(start, end, delta):
    print(time_part)

这些解决方案的优点是它们都使用了动态的timedelta。这在你不知道你将得到哪个时间增量的情况下非常有用。

你可以使用箭头:

这是一个来自文档的例子,在几个小时内迭代:

from arrow import Arrow

>>> start = datetime(2013, 5, 5, 12, 30)
>>> end = datetime(2013, 5, 5, 17, 15)
>>> for r in Arrow.range('hour', start, end):
...     print repr(r)
...
<Arrow [2013-05-05T12:30:00+00:00]>
<Arrow [2013-05-05T13:30:00+00:00]>
<Arrow [2013-05-05T14:30:00+00:00]>
<Arrow [2013-05-05T15:30:00+00:00]>
<Arrow [2013-05-05T16:30:00+00:00]>

要在几天内迭代,你可以这样使用:

>>> start = Arrow(2013, 5, 5)
>>> end = Arrow(2013, 5, 5)
>>> for r in Arrow.range('day', start, end):
...     print repr(r)

(没有检查你是否能通过datetime。日期对象,但无论如何箭头对象通常更容易)

from datetime import date,timedelta
delta = timedelta(days=1)
start = date(2020,1,1)
end=date(2020,9,1)
loop_date = start
while loop_date<=end:
    print(loop_date)
    loop_date+=delta