我知道未初始化的局部变量是未定义的行为(UB),而且值可能有陷阱表示,这可能会影响进一步的操作,但有时我想使用随机数仅为视觉表示,而不会在程序的其他部分进一步使用它们,例如,在视觉效果中设置随机颜色的东西,例如:

void updateEffect(){
    for(int i=0;i<1000;i++){
        int r;
        int g;
        int b;
        star[i].setColor(r%255,g%255,b%255);
        bool isVisible;
        star[i].setVisible(isVisible);
    }
}

比那么快吗

void updateEffect(){
    for(int i=0;i<1000;i++){
        star[i].setColor(rand()%255,rand()%255,rand()%255);
        star[i].setVisible(rand()%2==0?true:false);
    }
}

也比其他随机数生成器快吗?


当前回答

未定义的行为是未定义的。这并不意味着你得到了一个未定义的值,这意味着程序可以做任何事情,并且仍然满足语言规范。

一个好的优化编译器应该

void updateEffect(){
    for(int i=0;i<1000;i++){
        int r;
        int g;
        int b;
        star[i].setColor(r%255,g%255,b%255);
        bool isVisible;
        star[i].setVisible(isVisible);
    }
}

并编译成noop。这当然比任何其他选择都要快。它的缺点是什么都做不了,但这就是未定义行为的缺点。

其他回答

在任何想要使用未初始化变量的地方使用7757。我从质数列表中随机选择了它:

这是被定义的行为 它保证不总是0 它是质数 它很可能在统计上是随机的,就像未初始化一样 变量 它可能比未初始化的变量快,因为它的 值在编译时已知

不,太糟糕了。

使用未初始化变量的行为在C和c++中都是未定义的,而且这样的方案不太可能具有理想的统计属性。

如果你想要一个“快速而肮脏”的随机数生成器,那么rand()是你最好的选择。在它的实现中,它所做的只是一个乘法、一个加法和一个模数。

我所知道的最快的生成器需要你使用uint32_t作为伪随机变量I的类型,并使用

I = 1664525 * I + 1013904223

生成连续的值。你可以选择任何你喜欢的I的初始值(称为种子)。显然你可以内联编码。无符号类型的标准保证包装充当模数。(数字常数是由杰出的科学程序员Donald Knuth精心挑选的。)

有很多很好的答案,但请允许我补充另一个并强调一点,在确定性计算机中,没有什么是随机的。对于伪rng生成的数字和堆栈上为C/ c++局部变量保留的内存区域中发现的看似“随机”的数字都是如此。

但是…这里有一个关键的区别。

由优秀的伪随机生成器生成的数字具有统计上与真正的随机抽取相似的属性。例如,分布是均匀的。循环长度很长:在循环重复之前,你可以得到数百万个随机数。序列不是自相关的:例如,如果你取第2个、第3个或第27个数字,或者查看生成的数字中的特定数字,你不会开始看到奇怪的模式出现。

相比之下,留在堆栈上的“随机”数字没有任何这些属性。它们的值和明显的随机性完全取决于程序的构造方式、编译方式以及编译器对程序的优化方式。举例来说,这是你的想法的一个变体,作为一个自包含的程序:

#include <stdio.h>

notrandom()
{
        int r, g, b;

        printf("R=%d, G=%d, B=%d", r&255, g&255, b&255);
}

int main(int argc, char *argv[])
{
        int i;
        for (i = 0; i < 10; i++)
        {
                notrandom();
                printf("\n");
        }

        return 0;
}

当我在Linux机器上用GCC编译这段代码并运行它时,结果是相当不愉快的确定性:

R=0, G=19, B=0
R=130, G=16, B=255
R=130, G=16, B=255
R=130, G=16, B=255
R=130, G=16, B=255
R=130, G=16, B=255
R=130, G=16, B=255
R=130, G=16, B=255
R=130, G=16, B=255
R=130, G=16, B=255

If you looked at the compiled code with a disassembler, you could reconstruct what was going on, in detail. The first call to notrandom() used an area of the stack that was not used by this program previously; who knows what was in there. But after that call to notrandom(), there is a call to printf() (which the GCC compiler actually optimizes to a call to putchar(), but never mind) and that overwrites the stack. So the next and subsequent times, when notrandom() is called, the stack will contain stale data from the execution of putchar(), and since putchar() is always called with the same arguments, this stale data will always be the same, too.

因此,这种行为绝对不是随机的,通过这种方式获得的数字也不具有编写良好的伪随机数生成器的任何理想属性。事实上,在大多数现实场景中,它们的值是重复的并且高度相关的。

事实上,和其他人一样,我也会认真考虑解雇那些试图把这个想法当作“高性能RNG”的人。

未定义的行为意味着编译器的作者可以自由地忽略这个问题,因为无论发生什么,程序员都没有权利抱怨。

理论上,当进入UB域时,任何事情都可能发生(包括守护进程从你鼻子上飞出去),通常意味着编译器作者不会关心,对于局部变量,其值将是当时堆栈内存中的任何值。

这也意味着内容通常是“奇怪的”,但是是固定的,或者是稍微随机的,或者是可变的,但是有一个清晰的模式(例如,在每次迭代中增加值)。

当然,你不能指望它是一个不错的随机生成器。

如果操作得当,使用未初始化的数据来获得随机性并不一定是件坏事。事实上,OpenSSL正是这样做的,以播种它的PRNG。

显然,这种用法并没有很好地记录下来,因为有人注意到Valgrind抱怨使用未初始化的数据,并“修复”了它,导致了PRNG中的一个错误。

所以你可以这样做,但你需要知道你在做什么,并确保任何阅读你的代码的人都理解这一点。