给定一个无序的值列表,比如

a = [5, 1, 2, 2, 4, 3, 1, 2, 3, 1, 1, 5, 2]

我怎样才能得到出现在列表中的每个值的频率,就像这样?

# `a` has 4 instances of `1`, 4 of `2`, 2 of `3`, 1 of `4,` 2 of `5`
b = [4, 4, 2, 1, 2] # expected output

当前回答

如果列表是排序的,你可以使用itertools标准库中的groupby(如果不是,你可以先排序,尽管这需要O(nlgn)时间):

from itertools import groupby

a = [5, 1, 2, 2, 4, 3, 1, 2, 3, 1, 1, 5, 2]
[len(list(group)) for key, group in groupby(sorted(a))]

输出:

[4, 4, 2, 1, 2]

其他回答

#!usr/bin/python
def frq(words):
    freq = {}
    for w in words:
            if w in freq:
                    freq[w] = freq.get(w)+1
            else:
                    freq[w] =1
    return freq

fp = open("poem","r")
list = fp.read()
fp.close()
input = list.split()
print input
d = frq(input)
print "frequency of input\n: "
print d
fp1 = open("output.txt","w+")
for k,v in d.items():
fp1.write(str(k)+':'+str(v)+"\n")
fp1.close()

还有另一种不使用集合的算法解决方案:

def countFreq(A):
   n=len(A)
   count=[0]*n                     # Create a new list initialized with '0'
   for i in range(n):
      count[A[i]]+= 1              # increase occurrence for value A[i]
   return [x for x in count if x]  # return non-zero count
from collections import Counter
a=["E","D","C","G","B","A","B","F","D","D","C","A","G","A","C","B","F","C","B"]

counter=Counter(a)

kk=[list(counter.keys()),list(counter.values())]

pd.DataFrame(np.array(kk).T, columns=['Letter','Count'])
a=[1,2,3,4,5,1,2,3]
b=[0,0,0,0,0,0,0]
for i in range(0,len(a)):
    b[a[i]]+=1
num=[3,2,3,5,5,3,7,6,4,6,7,2]
print ('\nelements are:\t',num)
count_dict={}
for elements in num:
    count_dict[elements]=num.count(elements)
print ('\nfrequency:\t',count_dict)