给定一个无序的值列表,比如
a = [5, 1, 2, 2, 4, 3, 1, 2, 3, 1, 1, 5, 2]
我怎样才能得到出现在列表中的每个值的频率,就像这样?
# `a` has 4 instances of `1`, 4 of `2`, 2 of `3`, 1 of `4,` 2 of `5`
b = [4, 4, 2, 1, 2] # expected output
给定一个无序的值列表,比如
a = [5, 1, 2, 2, 4, 3, 1, 2, 3, 1, 1, 5, 2]
我怎样才能得到出现在列表中的每个值的频率,就像这样?
# `a` has 4 instances of `1`, 4 of `2`, 2 of `3`, 1 of `4,` 2 of `5`
b = [4, 4, 2, 1, 2] # expected output
当前回答
在Python 2.7(或更新版本)中,可以使用集合。计数器:
>>> import collections
>>> a = [5, 1, 2, 2, 4, 3, 1, 2, 3, 1, 1, 5, 2]
>>> counter = collections.Counter(a)
>>> counter
Counter({1: 4, 2: 4, 5: 2, 3: 2, 4: 1})
>>> counter.values()
dict_values([2, 4, 4, 1, 2])
>>> counter.keys()
dict_keys([5, 1, 2, 4, 3])
>>> counter.most_common(3)
[(1, 4), (2, 4), (5, 2)]
>>> dict(counter)
{5: 2, 1: 4, 2: 4, 4: 1, 3: 2}
>>> # Get the counts in order matching the original specification,
>>> # by iterating over keys in sorted order
>>> [counter[x] for x in sorted(counter.keys())]
[4, 4, 2, 1, 2]
如果您使用的是Python 2.6或更老版本,可以在这里下载实现。
其他回答
还有另一种不使用集合的算法解决方案:
def countFreq(A):
n=len(A)
count=[0]*n # Create a new list initialized with '0'
for i in range(n):
count[A[i]]+= 1 # increase occurrence for value A[i]
return [x for x in count if x] # return non-zero count
下面是使用itertools的另一个简洁的替代方案。Groupby也适用于无序输入:
from itertools import groupby
items = [5, 1, 1, 2, 2, 1, 1, 2, 2, 3, 4, 3, 5]
results = {value: len(list(freq)) for value, freq in groupby(sorted(items))}
结果
format: {value: num_of_occurencies}
{1: 4, 2: 4, 3: 2, 4: 1, 5: 2}
在Python 2.7(或更新版本)中,可以使用集合。计数器:
>>> import collections
>>> a = [5, 1, 2, 2, 4, 3, 1, 2, 3, 1, 1, 5, 2]
>>> counter = collections.Counter(a)
>>> counter
Counter({1: 4, 2: 4, 5: 2, 3: 2, 4: 1})
>>> counter.values()
dict_values([2, 4, 4, 1, 2])
>>> counter.keys()
dict_keys([5, 1, 2, 4, 3])
>>> counter.most_common(3)
[(1, 4), (2, 4), (5, 2)]
>>> dict(counter)
{5: 2, 1: 4, 2: 4, 4: 1, 3: 2}
>>> # Get the counts in order matching the original specification,
>>> # by iterating over keys in sorted order
>>> [counter[x] for x in sorted(counter.keys())]
[4, 4, 2, 1, 2]
如果您使用的是Python 2.6或更老版本,可以在这里下载实现。
另一种方法是使用较重但功能强大的库——NLTK。
import nltk
fdist = nltk.FreqDist(a)
fdist.values()
fdist.most_common()
我找到了另一种方法,使用集合。
#ar is the list of elements
#convert ar to set to get unique elements
sock_set = set(ar)
#create dictionary of frequency of socks
sock_dict = {}
for sock in sock_set:
sock_dict[sock] = ar.count(sock)