给定一个无序的值列表,比如

a = [5, 1, 2, 2, 4, 3, 1, 2, 3, 1, 1, 5, 2]

我怎样才能得到出现在列表中的每个值的频率,就像这样?

# `a` has 4 instances of `1`, 4 of `2`, 2 of `3`, 1 of `4,` 2 of `5`
b = [4, 4, 2, 1, 2] # expected output

当前回答

在Python 2.7(或更新版本)中,可以使用集合。计数器:

>>> import collections
>>> a = [5, 1, 2, 2, 4, 3, 1, 2, 3, 1, 1, 5, 2]
>>> counter = collections.Counter(a)
>>> counter
Counter({1: 4, 2: 4, 5: 2, 3: 2, 4: 1})
>>> counter.values()
dict_values([2, 4, 4, 1, 2])
>>> counter.keys()
dict_keys([5, 1, 2, 4, 3])
>>> counter.most_common(3)
[(1, 4), (2, 4), (5, 2)]
>>> dict(counter)
{5: 2, 1: 4, 2: 4, 4: 1, 3: 2}
>>> # Get the counts in order matching the original specification,
>>> # by iterating over keys in sorted order
>>> [counter[x] for x in sorted(counter.keys())]
[4, 4, 2, 1, 2]

如果您使用的是Python 2.6或更老版本,可以在这里下载实现。

其他回答

在Python 2.7(或更新版本)中,可以使用集合。计数器:

>>> import collections
>>> a = [5, 1, 2, 2, 4, 3, 1, 2, 3, 1, 1, 5, 2]
>>> counter = collections.Counter(a)
>>> counter
Counter({1: 4, 2: 4, 5: 2, 3: 2, 4: 1})
>>> counter.values()
dict_values([2, 4, 4, 1, 2])
>>> counter.keys()
dict_keys([5, 1, 2, 4, 3])
>>> counter.most_common(3)
[(1, 4), (2, 4), (5, 2)]
>>> dict(counter)
{5: 2, 1: 4, 2: 4, 4: 1, 3: 2}
>>> # Get the counts in order matching the original specification,
>>> # by iterating over keys in sorted order
>>> [counter[x] for x in sorted(counter.keys())]
[4, 4, 2, 1, 2]

如果您使用的是Python 2.6或更老版本,可以在这里下载实现。

对于您的第一个问题,迭代列表并使用字典跟踪元素的存在。

对于你的第二个问题,只需使用集合操作符。

from collections import Counter
a=["E","D","C","G","B","A","B","F","D","D","C","A","G","A","C","B","F","C","B"]

counter=Counter(a)

kk=[list(counter.keys()),list(counter.values())]

pd.DataFrame(np.array(kk).T, columns=['Letter','Count'])

通过遍历列表并计算它们,手动计算出现的数量,使用collections.defaultdict跟踪到目前为止看到的内容:

from collections import defaultdict

appearances = defaultdict(int)

for curr in a:
    appearances[curr] += 1

如果您不想使用任何库并保持简单和简短,可以尝试这种方法!

a = [1,1,1,1,2,2,2,2,3,3,4,5,5]
marked = []
b = [(a.count(i), marked.append(i))[0] for i in a if i not in marked]
print(b)

o/p

[4, 4, 2, 1, 2]