给定一个无序的值列表,比如

a = [5, 1, 2, 2, 4, 3, 1, 2, 3, 1, 1, 5, 2]

我怎样才能得到出现在列表中的每个值的频率,就像这样?

# `a` has 4 instances of `1`, 4 of `2`, 2 of `3`, 1 of `4,` 2 of `5`
b = [4, 4, 2, 1, 2] # expected output

当前回答

另一种方法是使用较重但功能强大的库——NLTK。

import nltk

fdist = nltk.FreqDist(a)
fdist.values()
fdist.most_common()

其他回答

郑重声明,一个实用的答案:

>>> L = [1,1,1,1,2,2,2,2,3,3,4,5,5]
>>> import functools
>>> >>> functools.reduce(lambda acc, e: [v+(i==e) for i, v in enumerate(acc,1)] if e<=len(acc) else acc+[0 for _ in range(e-len(acc)-1)]+[1], L, [])
[4, 4, 2, 1, 2]

如果你把0也算进去,那就更简洁了:

>>> functools.reduce(lambda acc, e: [v+(i==e) for i, v in enumerate(acc)] if e<len(acc) else acc+[0 for _ in range(e-len(acc))]+[1], L, [])
[0, 4, 4, 2, 1, 2]

一个解释:

我们从一个空的acc列表开始; 如果L的下一个元素e小于acc的大小,我们只需更新这个元素:如果acc的索引i是当前元素e,则v+(i==e)表示v+1,否则为之前的值v; 如果L的下一个元素e大于或等于acc的大小,我们必须展开acc以容纳新的1。

元素不必排序(itertools.groupby)。如果是负数,结果会很奇怪。

简单的解决方法就是用字典。

def frequency(l):
     d = {}
     for i in l:
        if i in d.keys():
           d[i] += 1
        else:
           d[i] = 1

     for k, v in d.iteritems():
        if v ==max (d.values()):
           return k,d.keys()

print(frequency([10,10,10,10,20,20,20,20,40,40,50,50,30]))
def frequencyDistribution(data):
    return {i: data.count(i) for i in data}   

print frequencyDistribution([1,2,3,4])

...

 {1: 1, 2: 1, 3: 1, 4: 1}   # originalNumber: count

通过遍历列表并计算它们,手动计算出现的数量,使用collections.defaultdict跟踪到目前为止看到的内容:

from collections import defaultdict

appearances = defaultdict(int)

for curr in a:
    appearances[curr] += 1

我找到了另一种方法,使用集合。

#ar is the list of elements
#convert ar to set to get unique elements
sock_set = set(ar)

#create dictionary of frequency of socks
sock_dict = {}

for sock in sock_set:
    sock_dict[sock] = ar.count(sock)