给定一个无序的值列表,比如
a = [5, 1, 2, 2, 4, 3, 1, 2, 3, 1, 1, 5, 2]
我怎样才能得到出现在列表中的每个值的频率,就像这样?
# `a` has 4 instances of `1`, 4 of `2`, 2 of `3`, 1 of `4,` 2 of `5`
b = [4, 4, 2, 1, 2] # expected output
给定一个无序的值列表,比如
a = [5, 1, 2, 2, 4, 3, 1, 2, 3, 1, 1, 5, 2]
我怎样才能得到出现在列表中的每个值的频率,就像这样?
# `a` has 4 instances of `1`, 4 of `2`, 2 of `3`, 1 of `4,` 2 of `5`
b = [4, 4, 2, 1, 2] # expected output
当前回答
另一种方法是使用较重但功能强大的库——NLTK。
import nltk
fdist = nltk.FreqDist(a)
fdist.values()
fdist.most_common()
其他回答
郑重声明,一个实用的答案:
>>> L = [1,1,1,1,2,2,2,2,3,3,4,5,5]
>>> import functools
>>> >>> functools.reduce(lambda acc, e: [v+(i==e) for i, v in enumerate(acc,1)] if e<=len(acc) else acc+[0 for _ in range(e-len(acc)-1)]+[1], L, [])
[4, 4, 2, 1, 2]
如果你把0也算进去,那就更简洁了:
>>> functools.reduce(lambda acc, e: [v+(i==e) for i, v in enumerate(acc)] if e<len(acc) else acc+[0 for _ in range(e-len(acc))]+[1], L, [])
[0, 4, 4, 2, 1, 2]
一个解释:
我们从一个空的acc列表开始; 如果L的下一个元素e小于acc的大小,我们只需更新这个元素:如果acc的索引i是当前元素e,则v+(i==e)表示v+1,否则为之前的值v; 如果L的下一个元素e大于或等于acc的大小,我们必须展开acc以容纳新的1。
元素不必排序(itertools.groupby)。如果是负数,结果会很奇怪。
简单的解决方法就是用字典。
def frequency(l):
d = {}
for i in l:
if i in d.keys():
d[i] += 1
else:
d[i] = 1
for k, v in d.iteritems():
if v ==max (d.values()):
return k,d.keys()
print(frequency([10,10,10,10,20,20,20,20,40,40,50,50,30]))
def frequencyDistribution(data):
return {i: data.count(i) for i in data}
print frequencyDistribution([1,2,3,4])
...
{1: 1, 2: 1, 3: 1, 4: 1} # originalNumber: count
通过遍历列表并计算它们,手动计算出现的数量,使用collections.defaultdict跟踪到目前为止看到的内容:
from collections import defaultdict
appearances = defaultdict(int)
for curr in a:
appearances[curr] += 1
我找到了另一种方法,使用集合。
#ar is the list of elements
#convert ar to set to get unique elements
sock_set = set(ar)
#create dictionary of frequency of socks
sock_dict = {}
for sock in sock_set:
sock_dict[sock] = ar.count(sock)