给定一个无序的值列表,比如

a = [5, 1, 2, 2, 4, 3, 1, 2, 3, 1, 1, 5, 2]

我怎样才能得到出现在列表中的每个值的频率,就像这样?

# `a` has 4 instances of `1`, 4 of `2`, 2 of `3`, 1 of `4,` 2 of `5`
b = [4, 4, 2, 1, 2] # expected output

当前回答

您可以使用python中提供的内置函数

l.count(l[i])


  d=[]
  for i in range(len(l)):
        if l[i] not in d:
             d.append(l[i])
             print(l.count(l[i])

上面的代码自动删除列表中的重复项,并打印原始列表和没有重复项的列表中每个元素的频率。

一枪双鸟!X维

其他回答

如果您不想使用任何库并保持简单和简短,可以尝试这种方法!

a = [1,1,1,1,2,2,2,2,3,3,4,5,5]
marked = []
b = [(a.count(i), marked.append(i))[0] for i in a if i not in marked]
print(b)

o/p

[4, 4, 2, 1, 2]

还有一种方法是使用字典和列表。数数,下面一种幼稚的做法。

dicio = dict()

a = [1,1,1,1,2,2,2,2,3,3,4,5,5]

b = list()

c = list()

for i in a:

   if i in dicio: continue 

   else:

      dicio[i] = a.count(i)

      b.append(a.count(i))

      c.append(i)

print (b)

print (c)
a=[1,2,3,4,5,1,2,3]
b=[0,0,0,0,0,0,0]
for i in range(0,len(a)):
    b[a[i]]+=1
from collections import Counter
a=["E","D","C","G","B","A","B","F","D","D","C","A","G","A","C","B","F","C","B"]

counter=Counter(a)

kk=[list(counter.keys()),list(counter.values())]

pd.DataFrame(np.array(kk).T, columns=['Letter','Count'])
num=[3,2,3,5,5,3,7,6,4,6,7,2]
print ('\nelements are:\t',num)
count_dict={}
for elements in num:
    count_dict[elements]=num.count(elements)
print ('\nfrequency:\t',count_dict)