给定一个无序的值列表,比如
a = [5, 1, 2, 2, 4, 3, 1, 2, 3, 1, 1, 5, 2]
我怎样才能得到出现在列表中的每个值的频率,就像这样?
# `a` has 4 instances of `1`, 4 of `2`, 2 of `3`, 1 of `4,` 2 of `5`
b = [4, 4, 2, 1, 2] # expected output
给定一个无序的值列表,比如
a = [5, 1, 2, 2, 4, 3, 1, 2, 3, 1, 1, 5, 2]
我怎样才能得到出现在列表中的每个值的频率,就像这样?
# `a` has 4 instances of `1`, 4 of `2`, 2 of `3`, 1 of `4,` 2 of `5`
b = [4, 4, 2, 1, 2] # expected output
当前回答
假设我们有一个列表:
fruits = ['banana', 'banana', 'apple', 'banana']
我们可以在列表中找出每种水果的数量,像这样:
import numpy as np
(unique, counts) = np.unique(fruits, return_counts=True)
{x:y for x,y in zip(unique, counts)}
结果:
{'banana': 3, 'apple': 1}
其他回答
a=[1,2,3,4,5,1,2,3]
b=[0,0,0,0,0,0,0]
for i in range(0,len(a)):
b[a[i]]+=1
你可以这样做:
import numpy as np
a = [1,1,1,1,2,2,2,2,3,3,4,5,5]
np.unique(a, return_counts=True)
输出:
(array([1, 2, 3, 4, 5]), array([4, 4, 2, 1, 2], dtype=int64))
第一个数组是值,第二个数组是具有这些值的元素的数量。
所以如果你想要得到一个数字数组,你应该使用这个:
np.unique(a, return_counts=True)[1]
这个答案更加明确
a = [1,1,1,1,2,2,2,2,3,3,3,4,4]
d = {}
for item in a:
if item in d:
d[item] = d.get(item)+1
else:
d[item] = 1
for k,v in d.items():
print(str(k)+':'+str(v))
# output
#1:4
#2:4
#3:3
#4:2
#remove dups
d = set(a)
print(d)
#{1, 2, 3, 4}
还有一种方法是使用字典和列表。数数,下面一种幼稚的做法。
dicio = dict()
a = [1,1,1,1,2,2,2,2,3,3,4,5,5]
b = list()
c = list()
for i in a:
if i in dicio: continue
else:
dicio[i] = a.count(i)
b.append(a.count(i))
c.append(i)
print (b)
print (c)
from collections import Counter
a=["E","D","C","G","B","A","B","F","D","D","C","A","G","A","C","B","F","C","B"]
counter=Counter(a)
kk=[list(counter.keys()),list(counter.values())]
pd.DataFrame(np.array(kk).T, columns=['Letter','Count'])