给定一个无序的值列表,比如
a = [5, 1, 2, 2, 4, 3, 1, 2, 3, 1, 1, 5, 2]
我怎样才能得到出现在列表中的每个值的频率,就像这样?
# `a` has 4 instances of `1`, 4 of `2`, 2 of `3`, 1 of `4,` 2 of `5`
b = [4, 4, 2, 1, 2] # expected output
给定一个无序的值列表,比如
a = [5, 1, 2, 2, 4, 3, 1, 2, 3, 1, 1, 5, 2]
我怎样才能得到出现在列表中的每个值的频率,就像这样?
# `a` has 4 instances of `1`, 4 of `2`, 2 of `3`, 1 of `4,` 2 of `5`
b = [4, 4, 2, 1, 2] # expected output
当前回答
from collections import Counter
a=["E","D","C","G","B","A","B","F","D","D","C","A","G","A","C","B","F","C","B"]
counter=Counter(a)
kk=[list(counter.keys()),list(counter.values())]
pd.DataFrame(np.array(kk).T, columns=['Letter','Count'])
其他回答
对于您的第一个问题,迭代列表并使用字典跟踪元素的存在。
对于你的第二个问题,只需使用集合操作符。
假设我们有一个列表:
fruits = ['banana', 'banana', 'apple', 'banana']
我们可以在列表中找出每种水果的数量,像这样:
import numpy as np
(unique, counts) = np.unique(fruits, return_counts=True)
{x:y for x,y in zip(unique, counts)}
结果:
{'banana': 3, 'apple': 1}
通过遍历列表并计算它们,手动计算出现的数量,使用collections.defaultdict跟踪到目前为止看到的内容:
from collections import defaultdict
appearances = defaultdict(int)
for curr in a:
appearances[curr] += 1
这个答案更加明确
a = [1,1,1,1,2,2,2,2,3,3,3,4,4]
d = {}
for item in a:
if item in d:
d[item] = d.get(item)+1
else:
d[item] = 1
for k,v in d.items():
print(str(k)+':'+str(v))
# output
#1:4
#2:4
#3:3
#4:2
#remove dups
d = set(a)
print(d)
#{1, 2, 3, 4}
我迟到了,但这也有用,也会帮助到其他人:
a = [1,1,1,1,2,2,2,2,3,3,4,5,5]
freq_list = []
a_l = list(set(a))
for x in a_l:
freq_list.append(a.count(x))
print 'Freq',freq_list
print 'number',a_l
会产生这个…
Freq [4, 4, 2, 1, 2]
number[1, 2, 3, 4, 5]