如何从列表中删除重复项,同时保持顺序?使用集合删除重复项会破坏原始顺序。 是否有内置的或python的习语?


当前回答

你可以引用一个列表推导式,因为它是由符号'_[1]'构建的。例如,下面的函数通过引用列表推导式对元素列表进行惟一化,而不改变它们的顺序。

def unique(my_list): 
    return [x for x in my_list if x not in locals()['_[1]']]

演示:

l1 = [1, 2, 3, 4, 1, 2, 3, 4, 5]
l2 = [x for x in l1 if x not in locals()['_[1]']]
print l2

输出:

[1, 2, 3, 4, 5]

其他回答

只是从外部module1中添加这样一个功能的另一个(非常高性能的)实现:

>>> from iteration_utilities import unique_everseen
>>> lst = [1,1,1,2,3,2,2,2,1,3,4]

>>> list(unique_everseen(lst))
[1, 2, 3, 4]

计时

我做了一些计时(Python 3.6),这些表明它比我测试的所有其他替代方案都快,包括OrderedDict.fromkeys, f7和more_itertools.unique_everseen:

%matplotlib notebook

from iteration_utilities import unique_everseen
from collections import OrderedDict
from more_itertools import unique_everseen as mi_unique_everseen

def f7(seq):
    seen = set()
    seen_add = seen.add
    return [x for x in seq if not (x in seen or seen_add(x))]

def iteration_utilities_unique_everseen(seq):
    return list(unique_everseen(seq))

def more_itertools_unique_everseen(seq):
    return list(mi_unique_everseen(seq))

def odict(seq):
    return list(OrderedDict.fromkeys(seq))

from simple_benchmark import benchmark

b = benchmark([f7, iteration_utilities_unique_everseen, more_itertools_unique_everseen, odict],
              {2**i: list(range(2**i)) for i in range(1, 20)},
              'list size (no duplicates)')
b.plot()

为了确保这一点,我还做了一个重复的测试,看看是否有区别:

import random

b = benchmark([f7, iteration_utilities_unique_everseen, more_itertools_unique_everseen, odict],
              {2**i: [random.randint(0, 2**(i-1)) for _ in range(2**i)] for i in range(1, 20)},
              'list size (lots of duplicates)')
b.plot()

一个只包含一个值:

b = benchmark([f7, iteration_utilities_unique_everseen, more_itertools_unique_everseen, odict],
              {2**i: [1]*(2**i) for i in range(1, 20)},
              'list size (only duplicates)')
b.plot()

在所有这些情况下,iteration_utilities。Unique_everseen函数是最快的(在我的电脑上)。


这iteration_utilities。unique_everseen函数也可以处理输入中的不可哈希值(但是当值是可哈希值时,性能是O(n*n)而不是O(n))。

>>> lst = [{1}, {1}, {2}, {1}, {3}]

>>> list(unique_everseen(lst))
[{1}, {2}, {3}]

1免责声明:我是该软件包的作者。

对于不可哈希类型(例如列表的列表),基于MizardX的:

def f7_noHash(seq)
    seen = set()
    return [ x for x in seq if str( x ) not in seen and not seen.add( str( x ) )]

这里有一些替代选项:http://www.peterbe.com/plog/uniqifiers-benchmark

最快的一个:

def f7(seq):
    seen = set()
    seen_add = seen.add
    return [x for x in seq if not (x in seen or seen_add(x))]

为什么要赋值。添加到seen_add而不是只调用see . Add ?Python是一种动态语言,解析可见。每次迭代添加比解析一个局部变量代价更大。观察。Add可能会在迭代之间发生更改,而运行时还不够聪明,无法排除这种情况。为了安全起见,它必须每次检查对象。

如果您计划在同一个数据集上大量使用这个函数,那么使用一个有序集可能会更好:http://code.activestate.com/recipes/528878/

O(1)每次操作的插入、删除和成员检查。

(小额外注意:see .add()总是返回None,所以以上值只是作为一种尝试更新集合的方式,而不是逻辑测试的组成部分。)

如果你经常使用pandas,并且美学优先于性能,那么考虑内置函数pandas. series .drop_duplicate:

    import pandas as pd
    import numpy as np

    uniquifier = lambda alist: pd.Series(alist).drop_duplicates().tolist()

    # from the chosen answer 
    def f7(seq):
        seen = set()
        seen_add = seen.add
        return [ x for x in seq if not (x in seen or seen_add(x))]

    alist = np.random.randint(low=0, high=1000, size=10000).tolist()

    print uniquifier(alist) == f7(alist)  # True

时间:

    In [104]: %timeit f7(alist)
    1000 loops, best of 3: 1.3 ms per loop
    In [110]: %timeit uniquifier(alist)
    100 loops, best of 3: 4.39 ms per loop

不使用导入模块或集的解决方案:

text = "ask not what your country can do for you ask what you can do for your country"
sentence = text.split(" ")
noduplicates = [(sentence[i]) for i in range (0,len(sentence)) if sentence[i] not in sentence[:i]]
print(noduplicates)

给输出:

['ask', 'not', 'what', 'your', 'country', 'can', 'do', 'for', 'you']