我有两个熊猫数据帧,它们有一些相同的行。
假设dataframe2是dataframe1的子集。
我怎么能得到dataframe1的行不在dataframe2?
df1 = pandas.DataFrame(data = {'col1' : [1, 2, 3, 4, 5], 'col2' : [10, 11, 12, 13, 14]})
df2 = pandas.DataFrame(data = {'col1' : [1, 2, 3], 'col2' : [10, 11, 12]})
df1
col1 col2
0 1 10
1 2 11
2 3 12
3 4 13
4 5 14
df2
col1 col2
0 1 10
1 2 11
2 3 12
预期结果:
col1 col2
3 4 13
4 5 14
这个怎么样:
df1 = pandas.DataFrame(data = {'col1' : [1, 2, 3, 4, 5],
'col2' : [10, 11, 12, 13, 14]})
df2 = pandas.DataFrame(data = {'col1' : [1, 2, 3],
'col2' : [10, 11, 12]})
records_df2 = set([tuple(row) for row in df2.values])
in_df2_mask = np.array([tuple(row) in records_df2 for row in df1.values])
result = df1[~in_df2_mask]
我这样做的方法包括添加一个新的列,该列对一个数据框架是唯一的,并使用它来选择是否保留一个条目
df2[col3] = 1
df1 = pd.merge(df_1, df_2, on=['field_x', 'field_y'], how = 'outer')
df1['Empt'].fillna(0, inplace=True)
这使得df1中的每个条目都有一个代码-如果它对df1是唯一的,则为0,如果它在两个数据框架中都是1。然后使用它来限制您想要的内容
answer = nonuni[nonuni['Empt'] == 0]
如前所述,isin要求列和索引必须相同才能进行匹配。如果match只适用于行内容,一种获取掩码的方法是将行转换为(Multi)Index:
In [77]: df1 = pandas.DataFrame(data = {'col1' : [1, 2, 3, 4, 5, 3], 'col2' : [10, 11, 12, 13, 14, 10]})
In [78]: df2 = pandas.DataFrame(data = {'col1' : [1, 3, 4], 'col2' : [10, 12, 13]})
In [79]: df1.loc[~df1.set_index(list(df1.columns)).index.isin(df2.set_index(list(df2.columns)).index)]
Out[79]:
col1 col2
1 2 11
4 5 14
5 3 10
如果需要考虑索引,set_index有关键字参数append来将列追加到现有索引。如果列没有对齐,list(df.columns)可以替换为列规范以对齐数据。
pandas.MultiIndex.from_tuples(df<N>.to_records(index = False).tolist())
也可以用来创建指数,但我怀疑这是否更有效。