在Python中使用哪个更好?Time.clock()还是time.time()?哪一种更准确?

例如:

start = time.clock()
... do something
elapsed = (time.clock() - start)

vs.

start = time.time()
... do something
elapsed = (time.time() - start)

当前回答

正如其他人所注意到的,time.clock()已被弃用,取而代之的是time.perf_counter()或time.process_time(),但Python 3.7通过time.perf_counter_ns()、time.process_time_ns()和time.time_ns()以及其他3个函数引入了纳秒分辨率计时。

PEP 564中详细介绍了这6个新的纳秒分辨率函数:

time.clock_gettime_ns (clock_id) 时间。clock_settime_ns (clock_id、时间:int) time.monotonic_ns () time.perf_counter_ns () time.process_time_ns () time.time_ns () 这些函数类似于没有_ns后缀的版本,但是 返回一个纳秒数作为Python int。

正如其他人也注意到的那样,使用timeit模块为函数和小代码段计时。

其他回答

其他人回答了re: time.time() vs. time.clock()。

但是,如果您是为了基准测试/分析目的而对代码块的执行进行计时,则应该查看timeit模块。

从3.3开始,time.clock()已弃用,建议使用time.process_time()或time.perf_counter()。

在2.7之前,根据time模块docs:

time.clock() On Unix, return the current processor time as a floating point number expressed in seconds. The precision, and in fact the very definition of the meaning of “processor time”, depends on that of the C function of the same name, but in any case, this is the function to use for benchmarking Python or timing algorithms. On Windows, this function returns wall-clock seconds elapsed since the first call to this function, as a floating point number, based on the Win32 function QueryPerformanceCounter(). The resolution is typically better than one microsecond.

此外,还有timeit模块用于对代码段进行基准测试。

有一件事要记住: 修改系统时间会影响time.time(),但不会影响time.clock()。

我需要控制一些自动测试的执行。如果测试用例的一个步骤所花费的时间超过了给定的时间量,那么该TC就会中止以继续进行下一个步骤。

但是有时需要一个步骤来更改系统时间(检查被测试应用程序的调度器模块),因此在几个小时后设置系统时间后,TC超时,测试用例被终止。我必须从time.time()切换到time.clock()来正确处理这个问题。

对比Ubuntu Linux和Windows 7的测试结果。

在Ubuntu上

>>> start = time.time(); time.sleep(0.5); (time.time() - start)
0.5005500316619873

Windows 7操作系统

>>> start = time.time(); time.sleep(0.5); (time.time() - start)
0.5

简单回答:在Python中使用time.clock()进行计时。

在*nix系统上,clock()返回处理器时间为浮点数,以秒表示。在Windows上,它以浮点数的形式返回自第一次调用此函数以来所经过的秒数。

time()返回自纪元以来的秒数,以UTC为单位,作为浮点数。不能保证您将获得比1秒更好的精度(即使time()返回一个浮点数)。还要注意,如果在两次调用该函数之间设置了系统时钟,那么第二次函数调用将返回一个较低的值。