在Python中使用哪个更好?Time.clock()还是time.time()?哪一种更准确?
例如:
start = time.clock()
... do something
elapsed = (time.clock() - start)
vs.
start = time.time()
... do something
elapsed = (time.time() - start)
在Python中使用哪个更好?Time.clock()还是time.time()?哪一种更准确?
例如:
start = time.clock()
... do something
elapsed = (time.clock() - start)
vs.
start = time.time()
... do something
elapsed = (time.time() - start)
当前回答
我使用这段代码来比较2种方法。我的操作系统是windows 8,处理器核心i5, RAM 4GB
import time
def t_time():
start=time.time()
time.sleep(0.1)
return (time.time()-start)
def t_clock():
start=time.clock()
time.sleep(0.1)
return (time.clock()-start)
counter_time=0
counter_clock=0
for i in range(1,100):
counter_time += t_time()
for i in range(1,100):
counter_clock += t_clock()
print "time() =",counter_time/100
print "clock() =",counter_clock/100
输出:
time() = 0.0993799996376
clock() = 0.0993572257367
其他回答
据我所知,time.clock()具有系统所允许的最大精度。
在Unix上,time.clock()测量当前进程已使用的CPU时间量,因此它不适用于测量从过去某个点开始的流逝时间。在Windows上,它将测量自第一次调用函数以来所经过的时钟秒数。在任意一个系统上,time.time()将返回自epoch以来经过的秒数。
如果您正在编写仅用于Windows的代码,则两者都可以工作(尽管您将使用不同的方法- time.clock()不需要减法)。如果要在Unix系统上运行,或者您想要保证可移植的代码,则需要使用time.time()。
简单的答案是:大多数时候time.clock()会更好。 然而,如果你正在为某些硬件计时(例如你在GPU中放入的某些算法),那么time.clock()将摆脱这个时间,而time.time()是唯一剩下的解决方案。
注意:无论使用何种方法,计时将取决于您无法控制的因素(进程何时切换,频率如何,……),这对于time.time()来说更糟糕,但对于time.clock()也存在,因此您永远不应该只运行一个计时测试,而是始终运行一系列测试并查看时间的均值/方差。
我使用这段代码来比较2种方法。我的操作系统是windows 8,处理器核心i5, RAM 4GB
import time
def t_time():
start=time.time()
time.sleep(0.1)
return (time.time()-start)
def t_clock():
start=time.clock()
time.sleep(0.1)
return (time.clock()-start)
counter_time=0
counter_clock=0
for i in range(1,100):
counter_time += t_time()
for i in range(1,100):
counter_clock += t_clock()
print "time() =",counter_time/100
print "clock() =",counter_clock/100
输出:
time() = 0.0993799996376
clock() = 0.0993572257367
其他人回答了re: time.time() vs. time.clock()。
但是,如果您是为了基准测试/分析目的而对代码块的执行进行计时,则应该查看timeit模块。