在Python中使用哪个更好?Time.clock()还是time.time()?哪一种更准确?

例如:

start = time.clock()
... do something
elapsed = (time.clock() - start)

vs.

start = time.time()
... do something
elapsed = (time.time() - start)

当前回答

我使用这段代码来比较2种方法。我的操作系统是windows 8,处理器核心i5, RAM 4GB

import time

def t_time():
    start=time.time()
    time.sleep(0.1)
    return (time.time()-start)


def t_clock():
    start=time.clock()
    time.sleep(0.1)
    return (time.clock()-start)




counter_time=0
counter_clock=0

for i in range(1,100):
    counter_time += t_time()

    for i in range(1,100):
        counter_clock += t_clock()

print "time() =",counter_time/100
print "clock() =",counter_clock/100

输出:

time() = 0.0993799996376

clock() = 0.0993572257367

其他回答

有一件事要记住: 修改系统时间会影响time.time(),但不会影响time.clock()。

我需要控制一些自动测试的执行。如果测试用例的一个步骤所花费的时间超过了给定的时间量,那么该TC就会中止以继续进行下一个步骤。

但是有时需要一个步骤来更改系统时间(检查被测试应用程序的调度器模块),因此在几个小时后设置系统时间后,TC超时,测试用例被终止。我必须从time.time()切换到time.clock()来正确处理这个问题。

正确答案:它们都是相同长度的分数。

但如果主题是时间,哪个更快?

一个小测试案例:

import timeit
import time

clock_list = []
time_list = []

test1 = """
def test(v=time.clock()):
    s = time.clock() - v
"""

test2 = """
def test(v=time.time()):
    s = time.time() - v
"""
def test_it(Range) :
    for i in range(Range) :
        clk = timeit.timeit(test1, number=10000)
        clock_list.append(clk)
        tml = timeit.timeit(test2, number=10000)
        time_list.append(tml)

test_it(100)

print "Clock Min: %f Max: %f Average: %f" %(min(clock_list), max(clock_list), sum(clock_list)/float(len(clock_list)))
print "Time  Min: %f Max: %f Average: %f" %(min(time_list), max(time_list), sum(time_list)/float(len(time_list)))

我不是在瑞士实验室工作,但我做过测试。

基于这个问题:time.clock()比time.time()更好

编辑:time.clock()是内部计数器,所以不能在外部使用,得到限制最大32位浮点数,如果不存储第一个/最后一个值,就不能继续计数。不能合并另一个计数器…

据我所知,time.clock()具有系统所允许的最大精度。

其他人回答了re: time.time() vs. time.clock()。

但是,如果您是为了基准测试/分析目的而对代码块的执行进行计时,则应该查看timeit模块。

从3.3开始,time.clock()已弃用,建议使用time.process_time()或time.perf_counter()。

在2.7之前,根据time模块docs:

time.clock() On Unix, return the current processor time as a floating point number expressed in seconds. The precision, and in fact the very definition of the meaning of “processor time”, depends on that of the C function of the same name, but in any case, this is the function to use for benchmarking Python or timing algorithms. On Windows, this function returns wall-clock seconds elapsed since the first call to this function, as a floating point number, based on the Win32 function QueryPerformanceCounter(). The resolution is typically better than one microsecond.

此外,还有timeit模块用于对代码段进行基准测试。