在Python中使用哪个更好?Time.clock()还是time.time()?哪一种更准确?
例如:
start = time.clock()
... do something
elapsed = (time.clock() - start)
vs.
start = time.time()
... do something
elapsed = (time.time() - start)
在Python中使用哪个更好?Time.clock()还是time.time()?哪一种更准确?
例如:
start = time.clock()
... do something
elapsed = (time.clock() - start)
vs.
start = time.time()
... do something
elapsed = (time.time() - start)
当前回答
简单回答:在Python中使用time.clock()进行计时。
在*nix系统上,clock()返回处理器时间为浮点数,以秒表示。在Windows上,它以浮点数的形式返回自第一次调用此函数以来所经过的秒数。
time()返回自纪元以来的秒数,以UTC为单位,作为浮点数。不能保证您将获得比1秒更好的精度(即使time()返回一个浮点数)。还要注意,如果在两次调用该函数之间设置了系统时钟,那么第二次函数调用将返回一个较低的值。
其他回答
time.clock()在Python 3.8中被移除,因为它具有平台相关的行为:
在Unix上,返回以秒表示的浮点数形式的当前处理器时间。 在Windows上,此函数以浮点数的形式返回自第一次调用该函数以来经过的时钟秒数 打印(time.clock ());time . sleep (10);print (time.clock ()) # Linux: 0.0382 0.0384 #参见处理器时间 # Windows: 26.1224 36.1566 #见clock Time
那么选择哪个函数呢?
Processor Time: This is how long this specific process spends actively being executed on the CPU. Sleep, waiting for a web request, or time when only other processes are executed will not contribute to this. Use time.process_time() Wall-Clock Time: This refers to how much time has passed "on a clock hanging on the wall", i.e. outside real time. Use time.perf_counter() time.time() also measures wall-clock time but can be reset, so you could go back in time time.monotonic() cannot be reset (monotonic = only goes forward) but has lower precision than time.perf_counter()
对比Ubuntu Linux和Windows 7的测试结果。
在Ubuntu上
>>> start = time.time(); time.sleep(0.5); (time.time() - start)
0.5005500316619873
Windows 7操作系统
>>> start = time.time(); time.sleep(0.5); (time.time() - start)
0.5
其他人回答了re: time.time() vs. time.clock()。
但是,如果您是为了基准测试/分析目的而对代码块的执行进行计时,则应该查看timeit模块。
有一件事要记住: 修改系统时间会影响time.time(),但不会影响time.clock()。
我需要控制一些自动测试的执行。如果测试用例的一个步骤所花费的时间超过了给定的时间量,那么该TC就会中止以继续进行下一个步骤。
但是有时需要一个步骤来更改系统时间(检查被测试应用程序的调度器模块),因此在几个小时后设置系统时间后,TC超时,测试用例被终止。我必须从time.time()切换到time.clock()来正确处理这个问题。
这取决于你在乎什么。如果您指的是WALL TIME(即墙上时钟上的时间),则TIME .clock()不能提供精度,因为它可能管理CPU时间。