Project Euler和其他编码竞赛通常有最长的运行时间,或者人们吹嘘他们的特定解决方案运行速度有多快。对于Python,有时方法有些笨拙——即向__main__添加计时代码。
描述Python程序运行时间的好方法是什么?
Project Euler和其他编码竞赛通常有最长的运行时间,或者人们吹嘘他们的特定解决方案运行速度有多快。对于Python,有时方法有些笨拙——即向__main__添加计时代码。
描述Python程序运行时间的好方法是什么?
当前回答
python wiki是一个用于分析资源的绝佳页面:http://wiki.python.org/moin/PythonSpeed/PerformanceTips#Profiling_Code
python文档也是如此:http://docs.python.org/library/profile.html
如Chris Lawlor所示,cProfile是一个很棒的工具,可以很容易地打印到屏幕上:
python -m cProfile -s time mine.py <args>
或存档:
python -m cProfile -o output.file mine.py <args>
PS>如果您使用的是Ubuntu,请确保安装python配置文件
apt-get install python-profiler
如果输出到文件,可以使用以下工具获得良好的可视化效果
PyCallGraph:创建调用图图像的工具安装:
pip install pycallgraph
run:
pycallgraph mine.py args
视图:
gimp pycallgraph.png
你可以使用任何你喜欢的方式来查看png文件,我使用了gimp不幸的是,我经常
dot:graph对于cairo渲染器位图太大。缩放0.257079以适合
这使我的图像变得难以使用。所以我通常创建svg文件:
pycallgraph -f svg -o pycallgraph.svg mine.py <args>
PS>确保安装graphviz(提供点程序):
pip install graphviz
使用gprof2dot通过@maxy/@quodlibetor绘制替代图形:
pip install gprof2dot
python -m cProfile -o profile.pstats mine.py
gprof2dot -f pstats profile.pstats | dot -Tsvg -o mine.svg
其他回答
值得指出的是,使用探查器仅在主线程上有效(默认情况下),如果使用它们,您将无法从其他线程获得任何信息。这可能有点棘手,因为探查器文档中完全没有提到它。
如果您还想评测线程,那么您需要查看文档中的threading.setprofile()函数。
您也可以创建自己的线程.Thread子类:
class ProfiledThread(threading.Thread):
# Overrides threading.Thread.run()
def run(self):
profiler = cProfile.Profile()
try:
return profiler.runcall(threading.Thread.run, self)
finally:
profiler.dump_stats('myprofile-%d.profile' % (self.ident,))
并使用ProfiledThread类而不是标准类。它可能会给你更多的灵活性,但我不确定它是否值得,特别是如果你使用的是不使用你的类的第三方代码。
pprofile文件
line_profiler(此处已介绍)也启发了pprofile,其描述如下:
行粒度、线程感知确定性和统计纯python剖面仪
它提供了line_profiler的行粒度,是纯Python,可以用作独立命令或模块,甚至可以生成callgrind格式的文件,这些文件可以很容易地使用[k|q]cachegrind进行分析。
vprof公司
还有vprof,一个Python包,描述如下:
[…]为各种Python程序特性(如运行时间和内存使用)提供丰富的交互式可视化。
这取决于您希望从分析中看到什么。简单的时间度量可以由(bash)给出。
time python python_prog.py
甚至“/usr/bin/time”也可以使用“--verbose”标志输出详细的度量。
为了检查每个函数给出的时间度量,并更好地了解在函数上花费的时间,可以使用python中的内置cProfile。
进入更详细的指标,如绩效,时间不是唯一的指标。您可以担心内存、线程等问题。分析选项:line_profiler是另一个通常用于逐行查找定时度量的分析器。2.memory_profiler是一个评测内存使用情况的工具。3.heapy(来自项目Guppy)描述如何使用堆中的对象。
这些是我常用的一些。但如果你想了解更多,试试看这本书这是一本非常好的书,讲述了如何从性能出发。您可以转到使用Cython和JIT(实时)编译的python的高级主题。
当我不是服务器的根用户时,我使用lsprofcalltree.py并像这样运行我的程序:
python lsprofcalltree.py -o callgrind.1 test.py
然后我可以用任何callgrind兼容的软件打开报告,比如qcachegrind
找到所有时间去向的最简单快捷的方法。
1. pip install snakeviz
2. python -m cProfile -o temp.dat <PROGRAM>.py
3. snakeviz temp.dat
在浏览器中绘制饼图。最大的部分是问题函数。非常简单。