如何在Python中声明常量?
在Java中,我们做:
public static final String CONST_NAME = "Name";
如何在Python中声明常量?
在Java中,我们做:
public static final String CONST_NAME = "Name";
当前回答
您可以将一个常量包装在numpy数组中,将其标记为仅写,并始终通过下标0调用它。
import numpy as np
# declare a constant
CONSTANT = 'hello'
# put constant in numpy and make read only
CONSTANT = np.array([CONSTANT])
CONSTANT.flags.writeable = False
# alternatively: CONSTANT.setflags(write=0)
# call our constant using 0 index
print 'CONSTANT %s' % CONSTANT[0]
# attempt to modify our constant with try/except
new_value = 'goodbye'
try:
CONSTANT[0] = new_value
except:
print "cannot change CONSTANT to '%s' it's value '%s' is immutable" % (
new_value, CONSTANT[0])
# attempt to modify our constant producing ValueError
CONSTANT[0] = new_value
>>>
CONSTANT hello
cannot change CONSTANT to 'goodbye' it's value 'hello' is immutable
Traceback (most recent call last):
File "shuffle_test.py", line 15, in <module>
CONSTANT[0] = new_value
ValueError: assignment destination is read-only
当然,这只保护numpy的内容,而不是变量“CONSTANT”本身;你仍然可以:
CONSTANT = 'foo'
和CONSTANT会改变,然而,这将很快抛出TypeError第一次在脚本中调用CONSTANT[0]。
尽管……我想如果你在某个时候把它改成
CONSTANT = [1,2,3]
现在你不会再得到TypeError了。嗯……
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.setflags.html
其他回答
在Python中,常量是不存在的,但是你可以通过在变量名的开头添加CONST_并在注释中声明它是一个常量来表明变量是一个常量并且不能被改变:
myVariable = 0
CONST_daysInWeek = 7 # This is a constant - do not change its value.
CONSTANT_daysInMonth = 30 # This is also a constant - do not change this value.
或者,你可以创建一个像常量一样的函数:
def CONST_daysInWeek():
return 7;
这里是我创建的一些习语的集合,试图改进一些已有的答案。
我知道常量的使用不是python式的,你不应该在家里这样做!
然而,Python是如此动态的语言!这个论坛展示了如何创建看起来和感觉起来像常量的构造。这个答案的主要目的是探索语言可以表达什么。
请不要对我太苛刻。
为了了解更多细节,我写了一篇关于这些习语的博客。
在这篇文章中,我将调用一个常量变量来引用一个常量值(不可变或其他)。此外,我说,当一个变量引用了一个客户机代码无法更新的可变对象时,它的值就被冻结了。
常量空间(SpaceConstants)
这个习惯用法创建了一个看起来像常量变量的名称空间(又名SpaceConstants)。它是Alex Martelli对代码片段的修改,以避免使用模块对象。具体地说,这种修改使用了我称之为类工厂的东西,因为在SpaceConstants函数中定义了一个名为SpaceConstants的类,并返回了它的一个实例。
我在stackoverflow和一篇博客文章中探讨了如何使用类工厂在Python中实现基于策略的设计。
def SpaceConstants():
def setattr(self, name, value):
if hasattr(self, name):
raise AttributeError(
"Cannot reassign members"
)
self.__dict__[name] = value
cls = type('SpaceConstants', (), {
'__setattr__': setattr
})
return cls()
sc = SpaceConstants()
print(sc.x) # raise "AttributeError: 'SpaceConstants' object has no attribute 'x'"
sc.x = 2 # bind attribute x
print(sc.x) # print "2"
sc.x = 3 # raise "AttributeError: Cannot reassign members"
sc.y = {'name': 'y', 'value': 2} # bind attribute y
print(sc.y) # print "{'name': 'y', 'value': 2}"
sc.y['name'] = 'yprime' # mutable object can be changed
print(sc.y) # print "{'name': 'yprime', 'value': 2}"
sc.y = {} # raise "AttributeError: Cannot reassign members"
一个冻结值的空间(SpaceFrozenValues)
下一个习惯用法是对SpaceConstants的修改,其中冻结了引用的可变对象。这个实现利用了setattr和getattr函数之间的共享闭包。可变对象的值由函数共享闭包内的变量缓存定义复制和引用。它形成了我所说的可变对象的闭包保护副本。
在使用这种习惯用法时必须小心,因为getattr通过执行深度复制来返回缓存的值。该操作可能对大型对象的性能产生重大影响!
from copy import deepcopy
def SpaceFrozenValues():
cache = {}
def setattr(self, name, value):
nonlocal cache
if name in cache:
raise AttributeError(
"Cannot reassign members"
)
cache[name] = deepcopy(value)
def getattr(self, name):
nonlocal cache
if name not in cache:
raise AttributeError(
"Object has no attribute '{}'".format(name)
)
return deepcopy(cache[name])
cls = type('SpaceFrozenValues', (),{
'__getattr__': getattr,
'__setattr__': setattr
})
return cls()
fv = SpaceFrozenValues()
print(fv.x) # AttributeError: Object has no attribute 'x'
fv.x = 2 # bind attribute x
print(fv.x) # print "2"
fv.x = 3 # raise "AttributeError: Cannot reassign members"
fv.y = {'name': 'y', 'value': 2} # bind attribute y
print(fv.y) # print "{'name': 'y', 'value': 2}"
fv.y['name'] = 'yprime' # you can try to change mutable objects
print(fv.y) # print "{'name': 'y', 'value': 2}"
fv.y = {} # raise "AttributeError: Cannot reassign members"
常量空间(ConstantSpace)
这个习惯用法是常量变量或ConstantSpace的不可变名称空间。它结合了Jon Betts在stackoverflow中给出的非常简单的答案和类工厂。
def ConstantSpace(**args):
args['__slots__'] = ()
cls = type('ConstantSpace', (), args)
return cls()
cs = ConstantSpace(
x = 2,
y = {'name': 'y', 'value': 2}
)
print(cs.x) # print "2"
cs.x = 3 # raise "AttributeError: 'ConstantSpace' object attribute 'x' is read-only"
print(cs.y) # print "{'name': 'y', 'value': 2}"
cs.y['name'] = 'yprime' # mutable object can be changed
print(cs.y) # print "{'name': 'yprime', 'value': 2}"
cs.y = {} # raise "AttributeError: 'ConstantSpace' object attribute 'x' is read-only"
cs.z = 3 # raise "AttributeError: 'ConstantSpace' object has no attribute 'z'"
冰冻空间(FrozenSpace)
这个习惯用法是冻结变量或FrozenSpace的不可变名称空间。它通过关闭生成的FrozenSpace类使每个变量成为受保护的属性,从前面的模式派生而来。
from copy import deepcopy
def FreezeProperty(value):
cache = deepcopy(value)
return property(
lambda self: deepcopy(cache)
)
def FrozenSpace(**args):
args = {k: FreezeProperty(v) for k, v in args.items()}
args['__slots__'] = ()
cls = type('FrozenSpace', (), args)
return cls()
fs = FrozenSpace(
x = 2,
y = {'name': 'y', 'value': 2}
)
print(fs.x) # print "2"
fs.x = 3 # raise "AttributeError: 'FrozenSpace' object attribute 'x' is read-only"
print(fs.y) # print "{'name': 'y', 'value': 2}"
fs.y['name'] = 'yprime' # try to change mutable object
print(fs.y) # print "{'name': 'y', 'value': 2}"
fs.y = {} # raise "AttributeError: 'FrozenSpace' object attribute 'x' is read-only"
fs.z = 3 # raise "AttributeError: 'FrozenSpace' object has no attribute 'z'"
我将创建一个重写基对象类的__setattr__方法的类,并用它包装我的常量,注意我使用的是python 2.7:
class const(object):
def __init__(self, val):
super(const, self).__setattr__("value", val)
def __setattr__(self, name, val):
raise ValueError("Trying to change a constant value", self)
换行字符串:
>>> constObj = const("Try to change me")
>>> constObj.value
'Try to change me'
>>> constObj.value = "Changed"
Traceback (most recent call last):
...
ValueError: Trying to change a constant value
>>> constObj2 = const(" or not")
>>> mutableObj = constObj.value + constObj2.value
>>> mutableObj #just a string
'Try to change me or not'
这很简单,但如果你想像使用非常量对象一样使用常量(不使用constObj.value),它会更密集一些。这可能会导致问题,所以最好保留.value来显示和知道您正在使用常量进行操作(尽管可能不是最“python”的方式)。
在其他语言中没有const关键字,但是可以创建一个具有“getter函数”来读取数据,但没有“setter函数”来重写数据的Property。这从本质上保护标识符不被更改。
下面是一个使用class属性的替代实现:
请注意,对于想了解常量的读者来说,代码远非简单。见下面的解释。
def constant(f):
def fset(self, value):
raise TypeError
def fget(self):
return f()
return property(fget, fset)
class _Const(object):
@constant
def FOO():
return 0xBAADFACE
@constant
def BAR():
return 0xDEADBEEF
CONST = _Const()
print(hex(CONST.FOO)) # -> '0xbaadfaceL'
CONST.FOO = 0
##Traceback (most recent call last):
## File "example1.py", line 22, in <module>
## CONST.FOO = 0
## File "example1.py", line 5, in fset
## raise TypeError
##TypeError
代码的解释:
定义一个接受表达式的函数常量,并使用它来构造一个“getter”——一个仅返回表达式值的函数。 setter函数引发TypeError,因此它是只读的 使用我们刚刚创建的常量函数作为装饰来快速定义只读属性。
用另一种更传统的方式:
(代码相当棘手,下面有更多解释)
class _Const(object):
def FOO():
def fset(self, value):
raise TypeError
def fget(self):
return 0xBAADFACE
return property(**locals())
FOO = FOO() # Define property.
CONST = _Const()
print(hex(CONST.FOO)) # -> '0xbaadfaceL'
CONST.FOO = 0
##Traceback (most recent call last):
## File "example2.py", line 16, in <module>
## CONST.FOO = 0
## File "example2.py", line 6, in fset
## raise TypeError
##TypeError
要定义标识符FOO,首先定义两个函数(fset, fget -名称由我选择)。 然后使用内置的属性函数构造一个可以“set”或“get”的对象。 注意属性函数的前两个参数名为fset和fget。 利用我们为自己的getter和setter选择这些名称的事实,并使用应用于该作用域的所有本地定义的**(双星号)创建一个关键字字典,将参数传递给属性函数
from enum import Enum
class StringConsts(str,Enum):
ONE='one'
TWO='two'
print(f'Truth is {StringConsts.ONE=="one"}') #Truth is True
StringConsts.ONE="one" #Error: Cannot reassign
Enum和str的混合让你不必重新实现setattr(通过Enum),也不必与其他str对象进行比较(通过str)。
这可能会使http://code.activestate.com/recipes/65207-constants-in-python/?in=user-97991完全弃用。