如何在Python中声明常量?

在Java中,我们做:

public static final String CONST_NAME = "Name";

当前回答

下面是一个“Constants”类的实现,它创建具有只读(常量)属性的实例。例如,可以使用Nums。PI来获得一个已初始化为3.14159的值,Nums。PI = 22引发异常。

# ---------- Constants.py ----------
class Constants(object):
    """
    Create objects with read-only (constant) attributes.
    Example:
        Nums = Constants(ONE=1, PI=3.14159, DefaultWidth=100.0)
        print 10 + Nums.PI
        print '----- Following line is deliberate ValueError -----'
        Nums.PI = 22
    """

    def __init__(self, *args, **kwargs):
        self._d = dict(*args, **kwargs)

    def __iter__(self):
        return iter(self._d)

    def __len__(self):
        return len(self._d)

    # NOTE: This is only called if self lacks the attribute.
    # So it does not interfere with get of 'self._d', etc.
    def __getattr__(self, name):
        return self._d[name]

    # ASSUMES '_..' attribute is OK to set. Need this to initialize 'self._d', etc.
    #If use as keys, they won't be constant.
    def __setattr__(self, name, value):
        if (name[0] == '_'):
            super(Constants, self).__setattr__(name, value)
        else:
            raise ValueError("setattr while locked", self)

if (__name__ == "__main__"):
    # Usage example.
    Nums = Constants(ONE=1, PI=3.14159, DefaultWidth=100.0)
    print 10 + Nums.PI
    print '----- Following line is deliberate ValueError -----'
    Nums.PI = 22

感谢@MikeGraham的FrozenDict,我将其作为一个起点。更改后,使用语法不再是Nums['ONE'],而是Nums.ONE。

感谢@Raufio的回答,对于覆盖__ setattr __的想法。

或者要了解更多功能的实现,请参阅@Hans_meine的实现 named_constants在GitHub

其他回答

在Python中,人们使用命名约定,例如私有方法使用__method,受保护方法使用_method。

所以用同样的方式,你可以简单地将常量声明为全大写,例如:

MY_CONSTANT = "one"

如果你想让这个常量永远不变,你可以挂钩到属性访问并做一些技巧,但更简单的方法是声明一个函数:

def MY_CONSTANT():
    return "one"

唯一的问题是,在任何地方都必须执行MY_CONSTANT(),但MY_CONSTANT = "one"在Python中是正确的方式(通常)。


你也可以使用namedtuple()来创建常量:

>>> from collections import namedtuple
>>> Constants = namedtuple('Constants', ['pi', 'e'])
>>> constants = Constants(3.14, 2.718)
>>> constants.pi
3.14
>>> constants.pi = 3
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
AttributeError: can't set attribute

在其他语言中没有const关键字,但是可以创建一个具有“getter函数”来读取数据,但没有“setter函数”来重写数据的Property。这从本质上保护标识符不被更改。

下面是一个使用class属性的替代实现:

请注意,对于想了解常量的读者来说,代码远非简单。见下面的解释。

def constant(f):
    def fset(self, value):
        raise TypeError
    def fget(self):
        return f()
    return property(fget, fset)

class _Const(object):
    @constant
    def FOO():
        return 0xBAADFACE
    @constant
    def BAR():
        return 0xDEADBEEF

CONST = _Const()

print(hex(CONST.FOO))  # -> '0xbaadfaceL'

CONST.FOO = 0
##Traceback (most recent call last):
##  File "example1.py", line 22, in <module>
##    CONST.FOO = 0
##  File "example1.py", line 5, in fset
##    raise TypeError
##TypeError

代码的解释:

定义一个接受表达式的函数常量,并使用它来构造一个“getter”——一个仅返回表达式值的函数。 setter函数引发TypeError,因此它是只读的 使用我们刚刚创建的常量函数作为装饰来快速定义只读属性。


用另一种更传统的方式:

(代码相当棘手,下面有更多解释)

class _Const(object):
    def FOO():
        def fset(self, value):
            raise TypeError
        def fget(self):
            return 0xBAADFACE
        return property(**locals())
    FOO = FOO()  # Define property.

CONST = _Const()

print(hex(CONST.FOO))  # -> '0xbaadfaceL'

CONST.FOO = 0
##Traceback (most recent call last):
##  File "example2.py", line 16, in <module>
##    CONST.FOO = 0
##  File "example2.py", line 6, in fset
##    raise TypeError
##TypeError

要定义标识符FOO,首先定义两个函数(fset, fget -名称由我选择)。 然后使用内置的属性函数构造一个可以“set”或“get”的对象。 注意属性函数的前两个参数名为fset和fget。 利用我们为自己的getter和setter选择这些名称的事实,并使用应用于该作用域的所有本地定义的**(双星号)创建一个关键字字典,将参数传递给属性函数

你可以使用Tuple常量变量:

tuple是一个有序且不可更改的集合

my_tuple = (1, "Hello", 3.4)
print(my_tuple[0])

这里是我创建的一些习语的集合,试图改进一些已有的答案。

我知道常量的使用不是python式的,你不应该在家里这样做!

然而,Python是如此动态的语言!这个论坛展示了如何创建看起来和感觉起来像常量的构造。这个答案的主要目的是探索语言可以表达什么。

请不要对我太苛刻。

为了了解更多细节,我写了一篇关于这些习语的博客。

在这篇文章中,我将调用一个常量变量来引用一个常量值(不可变或其他)。此外,我说,当一个变量引用了一个客户机代码无法更新的可变对象时,它的值就被冻结了。

常量空间(SpaceConstants)

这个习惯用法创建了一个看起来像常量变量的名称空间(又名SpaceConstants)。它是Alex Martelli对代码片段的修改,以避免使用模块对象。具体地说,这种修改使用了我称之为类工厂的东西,因为在SpaceConstants函数中定义了一个名为SpaceConstants的类,并返回了它的一个实例。

我在stackoverflow和一篇博客文章中探讨了如何使用类工厂在Python中实现基于策略的设计。

def SpaceConstants():
    def setattr(self, name, value):
        if hasattr(self, name):
            raise AttributeError(
                "Cannot reassign members"
            )
        self.__dict__[name] = value
    cls = type('SpaceConstants', (), {
        '__setattr__': setattr
    })
    return cls()

sc = SpaceConstants()

print(sc.x) # raise "AttributeError: 'SpaceConstants' object has no attribute 'x'"
sc.x = 2 # bind attribute x
print(sc.x) # print "2"
sc.x = 3 # raise "AttributeError: Cannot reassign members"
sc.y = {'name': 'y', 'value': 2} # bind attribute y
print(sc.y) # print "{'name': 'y', 'value': 2}"
sc.y['name'] = 'yprime' # mutable object can be changed
print(sc.y) # print "{'name': 'yprime', 'value': 2}"
sc.y = {} # raise "AttributeError: Cannot reassign members"

一个冻结值的空间(SpaceFrozenValues)

下一个习惯用法是对SpaceConstants的修改,其中冻结了引用的可变对象。这个实现利用了setattr和getattr函数之间的共享闭包。可变对象的值由函数共享闭包内的变量缓存定义复制和引用。它形成了我所说的可变对象的闭包保护副本。

在使用这种习惯用法时必须小心,因为getattr通过执行深度复制来返回缓存的值。该操作可能对大型对象的性能产生重大影响!

from copy import deepcopy

def SpaceFrozenValues():
    cache = {}
    def setattr(self, name, value):
        nonlocal cache
        if name in cache:
            raise AttributeError(
                "Cannot reassign members"
            )
        cache[name] = deepcopy(value)
    def getattr(self, name):
        nonlocal cache
        if name not in cache:
            raise AttributeError(
                "Object has no attribute '{}'".format(name)
            )
        return deepcopy(cache[name])
    cls = type('SpaceFrozenValues', (),{
        '__getattr__': getattr,
        '__setattr__': setattr
    })
    return cls()

fv = SpaceFrozenValues()
print(fv.x) # AttributeError: Object has no attribute 'x'
fv.x = 2 # bind attribute x
print(fv.x) # print "2"
fv.x = 3 # raise "AttributeError: Cannot reassign members"
fv.y = {'name': 'y', 'value': 2} # bind attribute y
print(fv.y) # print "{'name': 'y', 'value': 2}"
fv.y['name'] = 'yprime' # you can try to change mutable objects
print(fv.y) # print "{'name': 'y', 'value': 2}"
fv.y = {} # raise "AttributeError: Cannot reassign members"

常量空间(ConstantSpace)

这个习惯用法是常量变量或ConstantSpace的不可变名称空间。它结合了Jon Betts在stackoverflow中给出的非常简单的答案和类工厂。

def ConstantSpace(**args):
    args['__slots__'] = ()
    cls = type('ConstantSpace', (), args)
    return cls()

cs = ConstantSpace(
    x = 2,
    y = {'name': 'y', 'value': 2}
)

print(cs.x) # print "2"
cs.x = 3 # raise "AttributeError: 'ConstantSpace' object attribute 'x' is read-only"
print(cs.y) # print "{'name': 'y', 'value': 2}"
cs.y['name'] = 'yprime' # mutable object can be changed
print(cs.y) # print "{'name': 'yprime', 'value': 2}"
cs.y = {} # raise "AttributeError: 'ConstantSpace' object attribute 'x' is read-only"
cs.z = 3 # raise "AttributeError: 'ConstantSpace' object has no attribute 'z'"

冰冻空间(FrozenSpace)

这个习惯用法是冻结变量或FrozenSpace的不可变名称空间。它通过关闭生成的FrozenSpace类使每个变量成为受保护的属性,从前面的模式派生而来。

from copy import deepcopy

def FreezeProperty(value):
    cache = deepcopy(value)
    return property(
        lambda self: deepcopy(cache)
    )

def FrozenSpace(**args):
    args = {k: FreezeProperty(v) for k, v in args.items()}
    args['__slots__'] = ()
    cls = type('FrozenSpace', (), args)
    return cls()

fs = FrozenSpace(
    x = 2,
    y = {'name': 'y', 'value': 2}
)

print(fs.x) # print "2"
fs.x = 3 # raise "AttributeError: 'FrozenSpace' object attribute 'x' is read-only"
print(fs.y) # print "{'name': 'y', 'value': 2}"
fs.y['name'] = 'yprime' # try to change mutable object
print(fs.y) # print "{'name': 'y', 'value': 2}"
fs.y = {} # raise "AttributeError: 'FrozenSpace' object attribute 'x' is read-only"
fs.z = 3 # raise "AttributeError: 'FrozenSpace' object has no attribute 'z'"

在我的例子中,我需要不可变字节数组来实现包含许多文字数字的加密库,我想确保这些数字是常量。

这个答案是有效的,但是尝试重赋bytearray元素不会引发错误。

def const(func):
    '''implement const decorator'''
    def fset(self, val):
        '''attempting to set a const raises `ConstError`'''
        class ConstError(TypeError):
            '''special exception for const reassignment'''
            pass

        raise ConstError

    def fget(self):
        '''get a const'''
        return func()

    return property(fget, fset)


class Consts(object):
    '''contain all constants'''

    @const
    def C1():
        '''reassignment to C1 fails silently'''
        return bytearray.fromhex('deadbeef')

    @const
    def pi():
        '''is immutable'''
        return 3.141592653589793

常量是不可变的,但是常量bytearray赋值默默失败:

>>> c = Consts()
>>> c.pi = 6.283185307179586  # (https://en.wikipedia.org/wiki/Tau_(2%CF%80))
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "consts.py", line 9, in fset
    raise ConstError
__main__.ConstError
>>> c.C1[0] = 0
>>> c.C1[0]
222
>>> c.C1
bytearray(b'\xde\xad\xbe\xef')

一种更强大、更简单,甚至可能更“python化”的方法涉及使用memoryview对象(<= python-2.6中的缓冲区对象)。

import sys

PY_VER = sys.version.split()[0].split('.')

if int(PY_VER[0]) == 2:
    if int(PY_VER[1]) < 6:
        raise NotImplementedError
    elif int(PY_VER[1]) == 6:
        memoryview = buffer

class ConstArray(object):
    '''represent a constant bytearray'''
    def __init__(self, init):
        '''
        create a hidden bytearray and expose a memoryview of that bytearray for
        read-only use
        '''
        if int(PY_VER[1]) == 6:
            self.__array = bytearray(init.decode('hex'))
        else:
            self.__array = bytearray.fromhex(init)

        self.array = memoryview(self.__array)

    def __str__(self):
        return str(self.__array)

    def __getitem__(self, *args, **kwargs):
       return self.array.__getitem__(*args, **kwargs)

ConstArray项赋值是一个TypeError:

>>> C1 = ConstArray('deadbeef')
>>> C1[0] = 0
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: 'ConstArray' object does not support item assignment
>>> C1[0]
222