周围有一些数据结构非常有用,但大多数程序员都不知道。他们是哪一个?

每个人都知道链表、二叉树和散列,但比如Skip列表和Bloom过滤器。我想知道更多不太常见但值得了解的数据结构,因为它们依赖于伟大的想法,丰富了程序员的工具箱。

PS:我还对舞蹈链接等技术感兴趣,这些技术巧妙地利用了通用数据结构的财产。

编辑:请尝试包含更详细描述数据结构的页面链接。此外,试着补充几句关于数据结构为什么很酷的话(正如乔纳斯·Kölker已经指出的那样)。此外,尝试为每个答案提供一个数据结构。这将允许更好的数据结构仅根据其投票结果浮到顶部。


当前回答

使用2个堆栈实现的队列非常节省空间(与使用至少有1个额外指针/引用开销的链接列表不同)。

如何使用两个堆栈实现队列?

当排队人数很大时,这对我来说效果很好。如果我在一个指针上节省了8个字节,这意味着拥有百万条目的队列节省了大约8MB的RAM。

其他回答

芬威克树。这是一种数据结构,用于计算向量中两个给定的子索引i和j之间的所有元素的总和。简单的解决方案是,从开始时就预先计算总和,不允许更新项目(必须做O(n)工作才能跟上)。

Fenwick Trees允许您在O(logn)中更新和查询,它的工作方式非常简单。芬威克的原始论文对这一点做了很好的解释,可以在这里免费获得:

http://www.cs.ubc.ca/local/reading/proceedings/spe91-95/spe/vol24/issue3/spe884.pdf

它的父亲RQM树也很酷:它允许您保存关于向量的两个索引之间的最小元素的信息,它还可以在O(logn)更新和查询中工作。我喜欢先教RQM,然后教芬威克树。

斐波那契堆

它们被用于一些已知的最快算法(渐近)中,用于许多与图相关的问题,例如最短路径问题。Dijkstra的算法在标准二进制堆的O(E log V)时间内运行;使用斐波那契堆将其提高到O(E+V log V),这对于密集图来说是一个巨大的加速。然而,不幸的是,它们有一个很高的恒定因子,往往使它们在实践中不切实际。

成对堆是一种堆数据结构,具有相对简单的实现和出色的实际摊余性能。

我认为标准数据结构的无锁替代方案,即无锁队列、堆栈和列表被忽略了。随着并发性成为更高的优先级,它们变得越来越重要,并且比使用互斥或锁来处理并发读/写更令人钦佩。

以下是一些链接http://www.cl.cam.ac.uk/research/srg/netos/lock-free/http://www.research.ibm.com/people/m/michael/podc-1996.pdf[PDF链接]http://www.boyet.com/Articles/LockfreeStack.html

迈克·阿克顿(Mike Acton)的博客中有一些关于无锁设计和方法的优秀文章

增量列表/增量队列在cron或事件模拟器等程序中使用,以确定下一个事件何时应该触发。http://everything2.com/title/delta+列表http://www.cs.iastate.edu/~cs554/lec_notes/delta_clock.pdf