以此为本,以此为本,以此为本,以此为本,以此为本,以此为本,以此为本。
如果您的列表来自列表理解,问题可以通过纠正理解更简单/直接解决;请参见Python列表理解;压缩列表?
在这里,最受欢迎的解决方案通常只包含一个“层”的清单。 查看清单不规则(自愿清单)的清单,解决方案完全清单一个深度清单的结构(重复,一般)。
以此为本,以此为本,以此为本,以此为本,以此为本,以此为本,以此为本。
如果您的列表来自列表理解,问题可以通过纠正理解更简单/直接解决;请参见Python列表理解;压缩列表?
在这里,最受欢迎的解决方案通常只包含一个“层”的清单。 查看清单不规则(自愿清单)的清单,解决方案完全清单一个深度清单的结构(重复,一般)。
当前回答
def flatten(alist):
if alist == []:
return []
elif type(alist) is not list:
return [alist]
else:
return flatten(alist[0]) + flatten(alist[1:])
其他回答
使用 functools.reduce,将积累的列表 xs 添加到下列列表 ys:
from functools import reduce
xss = [[1,2,3], [4,5,6], [7], [8,9]]
out = reduce(lambda xs, ys: xs + ys, xss)
出口:
[1, 2, 3, 4, 5, 6, 7, 8, 9]
使用 operator.concat 的更快方法:
from functools import reduce
import operator
xss = [[1,2,3], [4,5,6], [7], [8,9]]
out = reduce(operator.concat, xss)
出口:
[1, 2, 3, 4, 5, 6, 7, 8, 9]
根據您的列表(1, 2, 3), [4, 5, 6], [7], [8, 9] 是 1 列表水平,我們可以簡單地使用數量(列表),而不使用任何圖書館。
sum([[1, 2, 3], [4, 5, 6], [7], [8, 9]],[])
# [1, 2, 3, 4, 5, 6, 7, 8, 9]
延伸此方法的优势,当内部存在一个<unk>或数字时,简单地将每个元素的地图函数添加到列表中
#For only tuple
sum(list(map(list,[[1, 2, 3], (4, 5, 6), (7,), [8, 9]])),[])
# [1, 2, 3, 4, 5, 6, 7, 8, 9]
#In general
def convert(x):
if type(x) is int or type(x) is float:
return [x]
else:
return list(x)
sum(list(map(convert,[[1, 2, 3], (4, 5, 6), 7, [8, 9]])),[])
# [1, 2, 3, 4, 5, 6, 7, 8, 9]
在这里,有一个明确的解释的缺点在记忆的这个方法。 简而言之,它重复创建列表对象,应该避免( )
考虑到列表L的列表,
flat_list = [item for sublist in l for item in sublist]
意思是:
flat_list = []
for sublist in l:
for item in sublist:
flat_list.append(item)
它比迄今为止发布的短篇文章更快(l 是表格的列表)。
下面是相应的功能:
def flatten(l):
return [item for sublist in l for item in sublist]
作为证据,您可以在标准图书馆中使用时间模块:
$ python -mtimeit -s'l=[[1,2,3],[4,5,6], [7], [8,9]]*99' '[item for sublist in l for item in sublist]'
10000 loops, best of 3: 143 usec per loop
$ python -mtimeit -s'l=[[1,2,3],[4,5,6], [7], [8,9]]*99' 'sum(l, [])'
1000 loops, best of 3: 969 usec per loop
$ python -mtimeit -s'l=[[1,2,3],[4,5,6], [7], [8,9]]*99' 'reduce(lambda x,y: x+y,l)'
1000 loops, best of 3: 1.1 msec per loop
解释:基于 + 的缩写(包括在总中使用)是必然的 O(L**2)当有 L 列表时 - 因为中间结果列表保持长,每个步骤都会分配一个新的中间结果列表对象,前中间结果中的所有对象都必须复制(以及在结尾添加一些新的对象)。
列表理解只产生一个列表,一次,并复制每个项目(从其原始居住地到结果列表)也准确一次。
def flatten_array(arr):
result = []
for item in arr:
if isinstance(item, list):
for num in item:
result.append(num)
else:
result.append(item)
return result
print(flatten_array([1, 2, [3, 4, 5], 6, [7, 8], 9]))
// output: [1, 2, 3, 4, 5, 6, 7, 8, 9]
matplotlib.cbook.flatten() 将为粘贴列表工作,即使它们比示例更深地粘贴。
import matplotlib
l = [[1, 2, 3], [4, 5, 6], [7], [8, 9]]
print(list(matplotlib.cbook.flatten(l)))
l2 = [[1, 2, 3], [4, 5, 6], [7], [8, [9, 10, [11, 12, [13]]]]]
print(list(matplotlib.cbook.flatten(l2)))
结果:
[1, 2, 3, 4, 5, 6, 7, 8, 9]
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]
这比 underscore 快 18 倍。
Average time over 1000 trials of matplotlib.cbook.flatten: 2.55e-05 sec
Average time over 1000 trials of underscore._.flatten: 4.63e-04 sec
(time for underscore._)/(time for matplotlib.cbook) = 18.1233394636