最近有很多关于卡桑德拉的话题。

Twitter, Digg, Facebook等都在使用它。

什么时候有意义:

使用卡桑德拉, 不用卡桑德拉,还有 使用RDMS而不是Cassandra。


当前回答

在部署Cassandra的过程中与某人交谈,它不能很好地处理多对多。他们正在做初步测试。我和Cassandra的顾问谈过这个问题,他说如果你有这样的习题集,他就不建议你这么做。

其他回答

没有什么是银弹,任何东西都是为了解决特定的问题而构建的,有自己的优点和缺点。这取决于你,你有什么问题陈述,什么是该问题的最佳解决方案。

我会按照你问的顺序一个一个地回答你的问题。因为Cassandra是基于NoSQL数据库家族的,所以在我回答你的问题之前,理解为什么使用NoSQL数据库是很重要的。

为什么使用NoSQL

In the case of RDBMS, making a choice is quite easy because all the databases like MySQL, Oracle, MS SQL, PostgreSQL in this category offer almost the same kind of solutions oriented toward ACID properties. When it comes to NoSQL, the decision becomes difficult because every NoSQL database offers different solutions and you have to understand which one is best suited for your app/system requirements. For example, MongoDB is fit for use cases where your system demands a schema-less document store. HBase might be fit for search engines, analyzing log data, or any place where scanning huge, two-dimensional join-less tables is a requirement. Redis is built to provide In-Memory search for varieties of data structures like trees, queues, linked lists, etc and can be a good fit for making real-time leaderboards, pub-sub kind of system. Similarly there are other databases in this category (Including Cassandra) which are fit for different problem statements. Now lets move to the original questions, and answer them one by one.

何时使用卡桑德拉

Being a part of the NoSQL family, Cassandra offers a solution for problems where one of your requirements is to have a very heavy write system and you want to have a quite responsive reporting system on top of that stored data. Consider the use case of Web analytics where log data is stored for each request and you want to built an analytical platform around it to count hits per hour, by browser, by IP, etc in a real time manner. You can refer to this blog post to understand more about the use cases where Cassandra fits in.

什么时候使用RDMS而不是Cassandra

Cassandra基于NoSQL数据库,不提供ACID和关系数据属性。如果您对ACID属性有强烈的需求(例如财务数据),Cassandra将不适合这种情况。显然,您可以为此制定一个变通方案,但是您最终将编写大量的应用程序代码来模拟ACID属性,并将严重延误上市时间。同时,使用Cassandra管理这种系统对您来说也是复杂而乏味的。

什么时候不用卡桑德拉

我认为上面的解释是否有意义不需要回答。

它不支持跨 表。 不支持二级索引。 二级索引必须依赖Elastic search /Solr,并且必须编写自定义同步组件。 非ACID兼容系统。 查询支持有限。

在这里,我将重点介绍一些重要的方面,这些方面可以帮助你决定是否真的需要卡桑德拉。这个清单并不详尽,只是我脑海中最重要的一些观点

Don't consider Cassandra as the first choice when you have a strict requirement on the relationship (across your dataset). Cassandra by default is AP system (of CAP). But, it supports tunable consistency which means it can be configured to support as CP as well. So don't ignore it just because you read somewhere that it's AP and you are looking for CP systems. Cassandra is more accurately termed “tuneably consistent,” which means it allows you to easily decide the level of consistency you require, in balance with the level of availability. Don't use Cassandra if your scale is not much or if you can deal with a non-distributed DB. Think harder if your team thinks that all your problems will be solved if you use distributed DBs like Cassandra. To start with these DBs is very simple as it comes with many defaults but optimizing and mastering it for solving a specific problem would require a good (if not a lot) amount of engineering effort. Cassandra is column-oriented but at the same time each row also has a unique key. So, it might be helpful to think of it as an indexed, row-oriented store. You can even use it as a document store. Cassandra doesn't force you to define the fields beforehand. So, if you are in a startup mode or your features are evolving (as in agile) - Cassandra embraces it. So better, first think about queries and then think about data to answer them. Cassandra is optimized for really high throughput on writes. If your use case is read-heavy (like cache) then Cassandra might not be an ideal choice.

除了上面给出的关于何时使用和何时不使用Cassandra的答案外,如果你决定使用Cassandra,你可能会考虑不使用Cassandra本身,而是使用它的众多表亲之一。

上面的一些答案已经指出了各种“NoSQL”系统,它们与Cassandra有许多相同的属性,有一些或大或小的差异,并且可能比Cassandra本身更适合您的特定需求。

Additionally, recently (several years after this question was originally asked), a Cassandra clone called Scylla (see https://en.wikipedia.org/wiki/Scylla_(database)) was released. Scylla is an open-source re-implementation of Cassandra in C++, which claims to have significantly higher throughput and lower latencies than the original Java Cassandra, while being mostly compatible with it (in features, APIs, and file formats). So if you're already considering Cassandra, you may want to consider Scylla as well.

你应该问自己以下问题:

(Volume, Velocity) Will you be writing and reading TONS of information , so much information that no one computer could handle the writes. (Global) Will you need this writing and reading capability around the world so that the writes in one part of the world are accessible in another part of the world? (Reliability) Do you need this database to be up and running all the time and never go down regardless of which Cloud, which country, whether it's VM , Container, or Bare metal? (Scale-ability) Do you need this database to be able to continue to grow easily and scale linearly (Consistency) Do you need TUNABLE consistency where some writes can happen asynchronously where as others need to be certified? (Skill) Are you willing to do what it takes to learn this technology and the data modeling that goes with creating a globally distributed database that can be fast for everyone, everywhere?

如果在这些问题中,你认为“可能”或“不”,你应该用别的词。如果你对所有问题的答案都是“当然”,那么你应该用卡桑德拉。

当你可以在一个盒子上做所有事情时,使用RDBMS。它可能比大多数方法都简单,任何人都可以使用它。