这是C++代码的一块 显示一些非常特殊的行为

出于某种原因,对数据进行分类(之前奇迹般地使主环速度快近六倍:

#include <algorithm>
#include <ctime>
#include <iostream>

int main()
{
    // Generate data
    const unsigned arraySize = 32768;
    int data[arraySize];

    for (unsigned c = 0; c < arraySize; ++c)
        data[c] = std::rand() % 256;

    // !!! With this, the next loop runs faster.
    std::sort(data, data + arraySize);

    // Test
    clock_t start = clock();
    long long sum = 0;
    for (unsigned i = 0; i < 100000; ++i)
    {
        for (unsigned c = 0; c < arraySize; ++c)
        {   // Primary loop.
            if (data[c] >= 128)
                sum += data[c];
        }
    }

    double elapsedTime = static_cast<double>(clock()-start) / CLOCKS_PER_SEC;

    std::cout << elapsedTime << '\n';
    std::cout << "sum = " << sum << '\n';
}
  • 不无std::sort(data, data + arraySize);代码在11.54秒内运行
  • 根据分类数据 代码在1.93秒内运行

(分类本身需要的时间比这个通过数组的时间要长, 所以如果我们需要计算未知数组, 它实际上不值得做 。)


起初,我以为这只是一种语言或编译器异常, 所以我尝试了爪哇:

import java.util.Arrays;
import java.util.Random;

public class Main
{
    public static void main(String[] args)
    {
        // Generate data
        int arraySize = 32768;
        int data[] = new int[arraySize];

        Random rnd = new Random(0);
        for (int c = 0; c < arraySize; ++c)
            data[c] = rnd.nextInt() % 256;

        // !!! With this, the next loop runs faster
        Arrays.sort(data);

        // Test
        long start = System.nanoTime();
        long sum = 0;
        for (int i = 0; i < 100000; ++i)
        {
            for (int c = 0; c < arraySize; ++c)
            {   // Primary loop.
                if (data[c] >= 128)
                    sum += data[c];
            }
        }

        System.out.println((System.nanoTime() - start) / 1000000000.0);
        System.out.println("sum = " + sum);
    }
}

其结果类似,但不太极端。


我第一种想法是 分类能把数据带进缓存缓存,但那是愚蠢的 因为阵列是刚刚产生的。

  • 这是怎么回事?
  • 为什么处理一个分类阵列的速度要快于处理一个未排序阵列的速度?

守则正在总结一些独立的术语,因此命令不应重要。


相关/后续行动不同/以后的编译者和选项的相同效果:


当前回答

这个问题已经回答过很多次了。我还是想提醒大家注意另一个有趣的分析。

最近,这个例子(稍作修改)也被用来演示如何在 Windows 上显示一个代码在程序本身中被剖析。 顺便提一下, 作者还展示了如何使用结果来确定代码的大部分时间用于分解和未排序的案例中。 最后, 文章还展示了如何使用HAL( Hardware Empaction Develople) 的一个鲜为人知的特征来确定未分类案例中的分支错误发生多少。

链接在此 :自我辩护示范

其他回答

官方的回答是来自

  1. 英特尔 -- -- 避免因部门错误而承担的费用
  2. 英特尔 - 分行和循环重组以防止误判
  3. 科学论文 -- -- 分支预测计算机结构
  4. 书籍:J.L.Hennnesy、D.A. Patterson:计算机结构:定量方法
  5. 发表在科学出版物上的文章:T.Y.Yeh、Y.N.Patt在分支预测中做了许多这些文章。

你也可以从这个可爱的图表图为什么树枝预测器被弄糊涂了

2-bit state diagram

原始代码中的每个元素都是随机值

data[c] = std::rand() % 256;

所以预测器会变形为std::rand()口交 口交 口交 口交 口交 口交 口交 口交 口交 口交 口交 口交 口交 口交 口交 口交 口交 口交 口交 口交 口交 口交 口交 口交 口交 口交 口交 口交 口交 口交

另一方面,一旦对预测进行分类, 预测器将首先进入一个 强烈未被采纳的状态, 当值变化到高值时, 预测器将分三步走, 从强烈未被采纳到强烈被采纳。


当对数组进行排序时,数据在 0 到 255 之间分布, 大约在迭代的前半部不会输入if- 声明if报表如下。 )

if (data[c] >= 128)
    sum += data[c];

The question is: What makes the above statement not execute in certain cases as in case of sorted data? Here comes the "branch predictor". A branch predictor is a digital circuit that tries to guess which way a branch (e.g. an if-then-else分支预测器的目的是改善教学管道的流量。 分支预测器在实现高效运行方面发挥着关键作用 !

让我们做一些板凳标记 来更好理解它

性能、性能、性能、性能、性能、性能、性能、性能、性能、性能、性能、性能、性能、性能、性能、性if如果条件总是真实的,或者总是假的,处理器中的分支预测逻辑将拾取该模式。另一方面,如果该模式无法预测,那么,if- 声明会更贵得多

让我们用不同的条件来衡量这个循环的性能:

for (int i = 0; i < max; i++)
    if (condition)
        sum++;

以下是环绕时间与不同的真假模式 :

Condition                Pattern             Time (ms)
-------------------------------------------------------
(i & 0×80000000) == 0    T repeated          322

(i & 0xffffffff) == 0    F repeated          276

(i & 1) == 0             TF alternating      760

(i & 3) == 0             TFFFTFFF…           513

(i & 2) == 0             TTFFTTFF…           1675

(i & 4) == 0             TTTTFFFFTTTTFFFF…   1275

(i & 8) == 0             8T 8F 8T 8F …       752

(i & 16) == 0            16T 16F 16T 16F …   490

“A ““真实的假造模式可以使if- 计算速度比“或”慢6倍。良好当然,哪一种模式是好的,哪一种模式是坏的,取决于汇编者的确切指示和具体处理者。

因此,部门预测对业绩的影响是毫无疑问的!

其他答复的假设是,一个人需要对数据进行分类是不正确的。

以下代码不排序整个阵列,但只排序其中的200个元素部分,因此运行速度最快。

只对 K 元素部分进行排序,以线性时间完成预处理,O(n),而不是O(n.log(n))排序整个阵列需要时间 。

#include <algorithm>
#include <ctime>
#include <iostream>

int main() {
    int data[32768]; const int l = sizeof data / sizeof data[0];

    for (unsigned c = 0; c < l; ++c)
        data[c] = std::rand() % 256;

    // sort 200-element segments, not the whole array
    for (unsigned c = 0; c + 200 <= l; c += 200)
        std::sort(&data[c], &data[c + 200]);

    clock_t start = clock();
    long long sum = 0;

    for (unsigned i = 0; i < 100000; ++i) {
        for (unsigned c = 0; c < sizeof data / sizeof(int); ++c) {
            if (data[c] >= 128)
                sum += data[c];
        }
    }

    std::cout << static_cast<double>(clock() - start) / CLOCKS_PER_SEC << std::endl;
    std::cout << "sum = " << sum << std::endl;
}

这个“证明”也与任何算法问题无关, 比如排序顺序, 并且确实是分支预测。

我用MATLAB 2011b 和我的MacBook Pro(Intel i7, 64位, 2.4 GHz) 尝试了以下MATLAB 代码的相同代码 :

% Processing time with Sorted data vs unsorted data
%==========================================================================
% Generate data
arraySize = 32768
sum = 0;
% Generate random integer data from range 0 to 255
data = randi(256, arraySize, 1);


%Sort the data
data1= sort(data); % data1= data  when no sorting done


%Start a stopwatch timer to measure the execution time
tic;

for i=1:100000

    for j=1:arraySize

        if data1(j)>=128
            sum=sum + data1(j);
        end
    end
end

toc;

ExeTimeWithSorting = toc - tic;

上述MATLAB代码的结果如下:

  a: Elapsed time (without sorting) = 3479.880861 seconds.
  b: Elapsed time (with sorting ) = 2377.873098 seconds.

校对:Soup

  a: Elapsed time (without sorting) = 19.8761 sec.
  b: Elapsed time (with sorting ) = 7.37778 sec.

基于这个,看来MATLAB几乎是175乘175次低于 C 执行的慢于 C 执行,没有排序和350乘350次换句话说,其效果(分支预测)是:1.46x执行和2.7x执行《公约》的《公约》。

在同一行中(我认为没有任何答案强调这一点),最好提到有时(特别是在软件中,在软件中,性能很重要——如Linux内核),如果声明如下,你可以找到一些:

if (likely( everything_is_ok ))
{
    /* Do something */
}

或类似:

if (unlikely(very_improbable_condition))
{
    /* Do something */    
}

两者likely()unlikely()事实上,它们是通过使用诸如海合会(海合会)等东西来界定的宏观。__builtin_expect帮助编译者插入预测代码以有利于条件, 同时考虑到用户提供的信息 。 海合会支持其他能改变运行程序行为或发布低级别指令的内建元素, 如清除缓存等 。文献文件穿过海合会现有的建筑

通常这种优化主要在硬实时应用程序或内嵌系统中找到,在这些系统中,执行时间很重要且至关重要。例如,如果您正在检查某些错误条件,而错误条件只发生1/10000 000次,那么为什么不通知编译者?这样,默认情况下,分支预测会假设该条件是假的。