前段时间我有一次有趣的面试经历。问题一开始很简单:

Q1:我们有一个袋子,里面有数字1,2,3,…,100。每个数字恰好出现一次,所以有100个数字。现在从袋子里随机抽取一个数字。找到丢失的号码。

当然,我以前听过这个面试问题,所以我很快就回答了这个问题:

A1:嗯,1 + 2 + 3 +…+ N的和是(N+1)(N/2)(参见维基百科:等差级数的和)。当N = 100时,和是5050。 因此,如果所有的数字都在袋子里,总和将恰好是5050。因为少了一个数,总和就会小于这个数,差的就是这个数。所以我们可以在O(N)时间和O(1)空间中找到这个缺失的数。

在这一点上,我认为我做得很好,但突然间,问题发生了意想不到的转变:

这是正确的,但是如果少了两个数字,你会怎么做?

我以前从未见过/听过/考虑过这种变化,所以我很恐慌,无法回答这个问题。面试官坚持要知道我的思考过程,所以我提到,也许我们可以通过与预期产品进行比较来获得更多信息,或者在从第一次传递中收集到一些信息后再进行第二次传递,等等,但我真的只是在黑暗中拍摄,而不是真正有一个明确的解决方案的路径。

面试官试图鼓励我说,有第二个方程确实是解决问题的一种方法。在这一点上,我有点不安(因为事先不知道答案),并问这是一种通用的(阅读:“有用的”)编程技术,还是只是一个技巧/答案。

面试官的回答让我惊讶:你可以把这个技巧概括为3个缺失的数字。事实上,你可以推广它来找到k个缺失的数。

Qk:如果袋子里少了k个数字,你如何有效地找到它?

这是几个月前的事了,我还不明白这个技巧是什么。显然有一个Ω(N)的时间下限,因为我们必须扫描所有的数字至少一次,但面试官坚持认为,解决技术的时间和空间复杂度(减去O(N)次输入扫描)定义为k而不是N。

所以问题很简单:

如何解决Q2? 你会如何解决Q3? 如何求解Qk?


澄清

Generally there are N numbers from 1..N, not just 1..100. I'm not looking for the obvious set-based solution, e.g. using a bit set, encoding the presence/absence each number by the value of a designated bit, therefore using O(N) bits in additional space. We can't afford any additional space proportional to N. I'm also not looking for the obvious sort-first approach. This and the set-based approach are worth mentioning in an interview (they are easy to implement, and depending on N, can be very practical). I'm looking for the Holy Grail solution (which may or may not be practical to implement, but has the desired asymptotic characteristics nevertheless).

当然,你必须以O(N)为单位扫描输入,但你只能捕获少量的信息(用k而不是N定义),然后必须以某种方式找到k个缺失的数字。


当前回答

这是个很简单的问题

void findMissing(){
    bool record[N] = {0};
    for(int i = 0; i < N; i++){
        record[bag[i]-1] = 1;
    }
    for(int i = 0; i < N; i++){
        if(!record[i]) cout << i+1 << endl;
    }
}

O(n)时间和空间复杂度

其他回答

我还没有检查数学,但我怀疑在计算Σ(n)的同时计算Σ(n^2)将提供足够的信息来得到两个缺失的数字,如果有三个,也要计算Σ(n^3),等等。

我已经阅读了所有30个答案,并找到了最简单的一个,即使用100位数组是最好的。但正如问题所说,我们不能使用大小为N的数组,我将使用O(1)空间复杂度和k次迭代,即O(NK)时间复杂度来解决这个问题。

为了让解释更简单,假设给了我从1到15的数字,其中两个少了,即9和14,但我不知道。让包看起来像这样:

,1,2,12,4,7,5,10,11,13,15,3,6 [8].

我们知道每个数字在内部都是以位的形式表示的。 对于16之前的数字,我们只需要4位。对于10^9之前的数字,我们将需要32位。但我们先关注4位然后再推广它。

现在,假设我们有从1到15的所有数字,那么在内部,我们会有这样的数字(如果我们把它们排序):

0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

但是现在少了两个数。所以我们的表示法看起来是这样的(为了理解,可以是任何顺序):

(2MSD|2LSD)
00|01
00|10
00|11
-----
01|00
01|01
01|10
01|11
-----
10|00
missing=(10|01) 
10|10
10|11
-----
11|00
11|01
missing=(11|10)
11|11

现在让我们创建一个大小为2的位数组,其中包含具有对应的两位最高位的数字的计数。即

= [__,__,__,__] 
   00,01,10,11

从左到右扫描袋子,填充上面的数组,使比特数组的每个bin都包含数字的计数。结果如下:

= [ 3, 4, 3, 3] 
   00,01,10,11

如果所有的数字都出现了,它看起来会是这样的:

= [ 3, 4, 4, 4] 
   00,01,10,11

因此,我们知道有两个数字缺失了:一个数字的最高两位有效位数是10,另一个数字的最高两位有效位数是11。现在再次扫描列表,并为下两位有效数字填写一个大小为2的位数组。这一次,只考虑前两位有效数字为10的元素。我们将有位数组为:

= [ 1, 0, 1, 1] 
   00,01,10,11

如果MSD=10的所有数字都存在,那么所有箱子中都有1个,但现在我们看到少了一个。因此,我们有MSD=10和LSD=01缺失的数字,即1001,即9。

类似地,如果我们再次扫描,但只考虑MSD=11的元素,我们得到MSD=11和LSD=10缺失,即1110,即14。

= [ 1, 0, 1, 1] 
   00,01,10,11

因此,我们可以在等量的空间中找到缺失的数字。我们可以推广到100 1000或10^9或任何一组数字。

参考资料:http://users.ece.utexas.edu/~adnan/afi-samples-new.pdf中的问题1.6

动机

如果您想解决一般情况下的问题,并且可以存储和编辑数组,那么到目前为止,Caf的解决方案是最有效的。如果您不能存储数组(流版本),那么sdcvvc的答案是目前建议的唯一解决方案类型。

我建议的解决方案是最有效的答案(到目前为止在这个线程中),如果你可以存储数组但不能编辑它,我从Svalorzen的解决方案中得到了这个想法,它解决了1或2个缺失的项目。该方案需要Θ(k*n)时间和O(min(k,log(n))和Ω(log(k))空间。它还可以很好地处理并行性。

概念

这个想法是,如果你使用原始的比较和的方法: sum = SumOf(1,n) - SumOf(数组)

... 然后取缺失数字的平均值: Average = sum/n_missing_numbers

…它提供了一个边界:在缺失的数字中,保证至少有一个数字小于或等于平均值,至少有一个数字大于平均值。这意味着我们可以分成子问题,每个子问题扫描数组[O(n)],并且只关心它们各自的子数组。

Code

c风格的解决方案(不要因为全局变量来评判我,我只是想让代码对非c语言的人来说可读):

#include "stdio.h"

// Example problem:
const int array [] = {0, 7, 3, 1, 5};
const int N = 8; // size of original array
const int array_size = 5;

int SumOneTo (int n)
{
    return n*(n-1)/2; // non-inclusive
}

int MissingItems (const int begin, const int end, int & average)
{
    // We consider only sub-array elements with values, v:
    // begin <= v < end
    
    // Initialise info about missing elements.
    // First assume all are missing:
    int n = end - begin;
    int sum = SumOneTo(end) - SumOneTo(begin);

    // Minus everything that we see (ie not missing):
    for (int i = 0; i < array_size; ++i)
    {
        if ((begin <= array[i]) && (array[i] < end))
        {
            --n;
            sum -= array[i];
        }
    }
    
    // used by caller:
    average = sum/n;
    return n;
}

void Find (const int begin, const int end)
{
    int average;

    if (MissingItems(begin, end, average) == 1)
    {
        printf(" %d", average); // average(n) is same as n
        return;
    }
    
    Find(begin, average + 1); // at least one missing here
    Find(average + 1, end); // at least one here also
}

int main ()
{   
    printf("Missing items:");
    
    Find(0, N);
    
    printf("\n");
}

分析

暂时忽略递归,每个函数调用显然需要O(n)时间和O(1)空间。请注意,sum可以等于n(n-1)/2,因此需要存储n-1所需的位数的两倍。这最多意味着我们实际上需要两个额外的元素的空间,不管数组或k的大小,因此它仍然是O(1)个空间。

对于k个缺失的元素有多少函数调用不是很明显,所以我将提供一个可视化的。原始子数组(连通数组)是完整数组,其中包含所有k个缺失元素。我们将把它们想象成递增的顺序,其中-表示连接(同一子数组的一部分):

M1—m2—m3—m4—(…)—mk-1—mk

Find函数的作用是将缺失的元素断开连接到不同的非重叠子数组中。它保证每个子数组中至少有一个缺失元素,这意味着恰好断开一个连接。

这意味着无论分割是如何发生的,它总是使用k-1 Find函数调用来查找只缺少一个元素的子数组。

那么时间复杂度为Θ((k-1 + k) *n) = Θ(k*n)。

对于空间复杂度,如果我们每次按比例分割,就会得到O(log(k))个空间复杂度,但如果我们每次只分离一个,就会得到O(k)个空间复杂度。

这里有一个关于为什么空间复杂度是O(log(n))的证明。鉴于上面我们已经证明了它也是O(k)那么我们知道它是O(min(k,log(n)))

我认为可以这样概括:

表示S, M为等差级数和乘法的初始值。

S = 1 + 2 + 3 + 4 + ... n=(n+1)*n/2
M = 1 * 2 * 3 * 4 * .... * n 

我应该考虑一个公式来计算这个,但这不是重点。无论如何,如果缺少一个数字,您已经提供了解决方案。但是,如果少了两个数字,让我们用S1和M1表示新的和和和总倍数,如下所示:

S1 = S - (a + b)....................(1)

Where a and b are the missing numbers.

M1 = M - (a * b)....................(2)

因为你知道S1 M1 M和S,上面的方程是可以解出a和b,缺失的数字。

现在来看看遗漏的三个数字:

S2 = S - ( a + b + c)....................(1)

Where a and b are the missing numbers.

M2 = M - (a * b * c)....................(2)

现在未知量是3而你只有两个方程可以解。

一个可能的解决方案:

public class MissingNumber {
    public static void main(String[] args) {
        // 0-20
        int [] a = {1,4,3,6,7,9,8,11,10,12,15,18,14};
        printMissingNumbers(a,20);
    }

    public static void printMissingNumbers(int [] a, int upperLimit){
        int b [] = new int[upperLimit];
        for(int i = 0; i < a.length; i++){
            b[a[i]] = 1;
        }
        for(int k = 0; k < upperLimit; k++){
            if(b[k] == 0)
                System.out.println(k);
        }
    }
}