前段时间我有一次有趣的面试经历。问题一开始很简单:

Q1:我们有一个袋子,里面有数字1,2,3,…,100。每个数字恰好出现一次,所以有100个数字。现在从袋子里随机抽取一个数字。找到丢失的号码。

当然,我以前听过这个面试问题,所以我很快就回答了这个问题:

A1:嗯,1 + 2 + 3 +…+ N的和是(N+1)(N/2)(参见维基百科:等差级数的和)。当N = 100时,和是5050。 因此,如果所有的数字都在袋子里,总和将恰好是5050。因为少了一个数,总和就会小于这个数,差的就是这个数。所以我们可以在O(N)时间和O(1)空间中找到这个缺失的数。

在这一点上,我认为我做得很好,但突然间,问题发生了意想不到的转变:

这是正确的,但是如果少了两个数字,你会怎么做?

我以前从未见过/听过/考虑过这种变化,所以我很恐慌,无法回答这个问题。面试官坚持要知道我的思考过程,所以我提到,也许我们可以通过与预期产品进行比较来获得更多信息,或者在从第一次传递中收集到一些信息后再进行第二次传递,等等,但我真的只是在黑暗中拍摄,而不是真正有一个明确的解决方案的路径。

面试官试图鼓励我说,有第二个方程确实是解决问题的一种方法。在这一点上,我有点不安(因为事先不知道答案),并问这是一种通用的(阅读:“有用的”)编程技术,还是只是一个技巧/答案。

面试官的回答让我惊讶:你可以把这个技巧概括为3个缺失的数字。事实上,你可以推广它来找到k个缺失的数。

Qk:如果袋子里少了k个数字,你如何有效地找到它?

这是几个月前的事了,我还不明白这个技巧是什么。显然有一个Ω(N)的时间下限,因为我们必须扫描所有的数字至少一次,但面试官坚持认为,解决技术的时间和空间复杂度(减去O(N)次输入扫描)定义为k而不是N。

所以问题很简单:

如何解决Q2? 你会如何解决Q3? 如何求解Qk?


澄清

Generally there are N numbers from 1..N, not just 1..100. I'm not looking for the obvious set-based solution, e.g. using a bit set, encoding the presence/absence each number by the value of a designated bit, therefore using O(N) bits in additional space. We can't afford any additional space proportional to N. I'm also not looking for the obvious sort-first approach. This and the set-based approach are worth mentioning in an interview (they are easy to implement, and depending on N, can be very practical). I'm looking for the Holy Grail solution (which may or may not be practical to implement, but has the desired asymptotic characteristics nevertheless).

当然,你必须以O(N)为单位扫描输入,但你只能捕获少量的信息(用k而不是N定义),然后必须以某种方式找到k个缺失的数字。


当前回答

一个可能的解决方案:

public class MissingNumber {
    public static void main(String[] args) {
        // 0-20
        int [] a = {1,4,3,6,7,9,8,11,10,12,15,18,14};
        printMissingNumbers(a,20);
    }

    public static void printMissingNumbers(int [] a, int upperLimit){
        int b [] = new int[upperLimit];
        for(int i = 0; i < a.length; i++){
            b[a[i]] = 1;
        }
        for(int k = 0; k < upperLimit; k++){
            if(b[k] == 0)
                System.out.println(k);
        }
    }
}

其他回答

你可以解出Q2如果你有两个链表的和和和两个链表的乘积。

(l1为原始列表,l2为修改后的列表)

d = sum(l1) - sum(l2)
m = mul(l1) / mul(l2)

我们可以优化它,因为等差级数的和是第一项和最后一项的平均值的n倍:

n = len(l1)
d = (n/2)*(n+1) - sum(l2)

现在我们知道(如果a和b是被移除的数字):

a + b = d
a * b = m

所以我们可以重新排列为:

a = s - b
b * (s - b) = m

然后乘出来:

-b^2 + s*b = m

然后重新排列,使右边为零

-b^2 + s*b - m = 0

然后用二次公式求解:

b = (-s + sqrt(s^2 - (4*-1*-m)))/-2
a = s - b

Python 3示例代码:

from functools import reduce
import operator
import math
x = list(range(1,21))
sx = (len(x)/2)*(len(x)+1)
x.remove(15)
x.remove(5)
mul = lambda l: reduce(operator.mul,l)
s = sx - sum(x)
m = mul(range(1,21)) / mul(x)
b = (-s + math.sqrt(s**2 - (-4*(-m))))/-2
a = s - b
print(a,b) #15,5

我不知道根号,减法和求和函数的复杂性,所以我无法计算出这个解决方案的复杂性(如果有人知道,请在下面评论)。

对于Q2,这是一个比其他解决方案效率更低的解决方案,但仍然有O(N)个运行时和O(k)个空间。

这个想法是运行原始算法两次。在第一个例子中,你得到了缺失的总数,这给了你缺失数字的上界。我们称这个数为N,你知道这两个数的和是N,所以第一个数只能在[1,floor((N-1)/2)]区间内,而第二个数将在[floor(N/2)+1,N-1]区间内。

因此,再次循环所有数字,丢弃第一个间隔中不包括的所有数字。你可以记录它们的和。最后,你将知道丢失的两个数字中的一个,进而知道第二个数字。

我有一种感觉,这种方法可以被推广,也许在一次输入传递期间,多个搜索可以“并行”运行,但我还没有弄清楚如何做到这一点。

我还没有检查数学,但我怀疑在计算Σ(n)的同时计算Σ(n^2)将提供足够的信息来得到两个缺失的数字,如果有三个,也要计算Σ(n^3),等等。

下面是Dimitris Andreou链接的摘要。

记住i次幂的和,其中i=1 2 .. k。这就把问题简化为解方程组

A1 + A2 + ... + AK = B1

A12 + A22 + ... + AK2 = B2

...

a1k + a2k + ... + laas = bk

利用牛顿恒等式,知道bi就可以计算

c1 = a1 + a2 +ak

c2 = a1a2 + a1a3 +,+ ak-1ak

...

ck = a1a2 ..ak

如果你展开多项式(x-a1)…(x-ak)系数正好是c1,…, ck -见Viète的公式。由于每个多项式因子都是唯一的(多项式环是欧几里得域),这意味着ai是唯一确定的,直到排列为止。

这就证明了记住幂就足以恢复数字。对于常数k,这是一个很好的方法。

However, when k is varying, the direct approach of computing c1,...,ck is prohibitely expensive, since e.g. ck is the product of all missing numbers, magnitude n!/(n-k)!. To overcome this, perform computations in Zq field, where q is a prime such that n <= q < 2n - it exists by Bertrand's postulate. The proof doesn't need to be changed, since the formulas still hold, and factorization of polynomials is still unique. You also need an algorithm for factorization over finite fields, for example the one by Berlekamp or Cantor-Zassenhaus.

常数k的高级伪代码:

计算给定数的i次幂 相减得到未知数字的i次幂的和。称这些和为bi。 利用牛顿恒等式从bi中计算系数;叫它们ci。c1 = b1;C2 = (c1b1 - b2)/2;详见维基百科的精确公式 因式分解多项式xk-c1xk-1 +…+ ck。 多项式的根是所需的数a1,…正义与发展党。

对于改变k,使用例如Miller-Rabin,找到质数n <= q < 2n,并对所有数字对q进行模数化简来执行步骤。

编辑:这个答案的前一个版本表明,可以使用特征2 (q=2^(log n))的有限域来代替Zq,其中q是素数。但事实并非如此,因为牛顿公式需要除以k以内的数。

You can motivate the solution by thinking about it in terms of symmetries (groups, in math language). No matter the order of the set of numbers, the answer should be the same. If you're going to use k functions to help determine the missing elements, you should be thinking about what functions have that property: symmetric. The function s_1(x) = x_1 + x_2 + ... + x_n is an example of a symmetric function, but there are others of higher degree. In particular, consider the elementary symmetric functions. The elementary symmetric function of degree 2 is s_2(x) = x_1 x_2 + x_1 x_3 + ... + x_1 x_n + x_2 x_3 + ... + x_(n-1) x_n, the sum of all products of two elements. Similarly for the elementary symmetric functions of degree 3 and higher. They are obviously symmetric. Furthermore, it turns out they are the building blocks for all symmetric functions.

你可以通过注意s_2(x,x_(n+1)) = s_2(x) + s_1(x)(x_(n+1))来构建初等对称函数。进一步思考应该会使您相信s_3(x,x_(n+1)) = s_3(x) + s_2(x)(x_(n+1))等等,因此它们可以在一次传递中计算。

我们如何知道数组中缺少了哪些项?考虑多项式(z-x_1) (z-x_2)……(z-x_n)。如果你输入任意一个数字x_i,它的值都是0。展开多项式,得到z^n-s_1(x)z^(n-1)+。+ (-1)^n s_n。初等对称函数也出现在这里,这并不奇怪,因为多项式应该保持不变,如果我们对根进行任何排列。

所以我们可以建立一个多项式,并尝试因式分解来找出哪些数不在集合中,就像其他人提到的那样。

Finally, if we are concerned about overflowing memory with large numbers (the nth symmetric polynomial will be of the order 100!), we can do these calculations mod p where p is a prime bigger than 100. In that case we evaluate the polynomial mod p and find that it again evaluates to 0 when the input is a number in the set, and it evaluates to a non-zero value when the input is a number not in the set. However, as others have pointed out, to get the values out of the polynomial in time that depends on k, not N, we have to factor the polynomial mod p.