我如何在MongoDB中执行SQL Join等效?

例如,假设你有两个集合(用户和评论),我想拉pid=444的所有评论以及每个评论的用户信息。

comments
  { uid:12345, pid:444, comment="blah" }
  { uid:12345, pid:888, comment="asdf" }
  { uid:99999, pid:444, comment="qwer" }

users
  { uid:12345, name:"john" }
  { uid:99999, name:"mia"  }

是否有一种方法可以一次性提取具有特定字段的所有评论(例如. ...find({pid:444}))和与每个评论相关的用户信息?

目前,我首先获取符合条件的注释,然后找出结果集中的所有uid,获取用户对象,并将它们与注释的结果合并。看来我做错了。


当前回答

你必须按照你描述的方法去做。MongoDB是非关系数据库,不支持连接。

其他回答

你可以使用Postgres中的mongo_fdw在MongoDB上运行包括join在内的SQL查询。

mongodb官方网站上的这个页面恰好解决了这个问题:

https://mongodb-documentation.readthedocs.io/en/latest/ecosystem/tutorial/model-data-for-ruby-on-rails.html

When we display our list of stories, we'll need to show the name of the user who posted the story. If we were using a relational database, we could perform a join on users and stores, and get all our objects in a single query. But MongoDB does not support joins and so, at times, requires bit of denormalization. Here, this means caching the 'username' attribute. Relational purists may be feeling uneasy already, as if we were violating some universal law. But let’s bear in mind that MongoDB collections are not equivalent to relational tables; each serves a unique design objective. A normalized table provides an atomic, isolated chunk of data. A document, however, more closely represents an object as a whole. In the case of a social news site, it can be argued that a username is intrinsic to the story being posted.

不,看起来你并没有做错。MongoDB连接是“客户端”。就像你说的

目前,我首先获取符合条件的注释,然后找出结果集中的所有uid,获取用户对象,并将它们与注释的结果合并。看来我做错了。

1) Select from the collection you're interested in.
2) From that collection pull out ID's you need
3) Select from other collections
4) Decorate your original results.

它不是一个“真正的”连接,但它实际上比SQL连接有用得多,因为您不必处理“多”面连接的重复行,而是修饰最初选择的集合。

这一页上有很多废话和FUD。结果5年后,MongoDB仍然存在。

我们可以使用mongodb客户端控制台在几行中使用一个简单的函数合并/连接一个集合中的所有数据,现在我们可以执行所需的查询。 下面是一个完整的例子,

——作者:

db.authors.insert([
    {
        _id: 'a1',
        name: { first: 'orlando', last: 'becerra' },
        age: 27
    },
    {
        _id: 'a2',
        name: { first: 'mayra', last: 'sanchez' },
        age: 21
    }
]);

——类:

db.categories.insert([
    {
        _id: 'c1',
        name: 'sci-fi'
    },
    {
        _id: 'c2',
        name: 'romance'
    }
]);

——书

db.books.insert([
    {
        _id: 'b1',
        name: 'Groovy Book',
        category: 'c1',
        authors: ['a1']
    },
    {
        _id: 'b2',
        name: 'Java Book',
        category: 'c2',
        authors: ['a1','a2']
    },
]);

-图书借阅

db.lendings.insert([
    {
        _id: 'l1',
        book: 'b1',
        date: new Date('01/01/11'),
        lendingBy: 'jose'
    },
    {
        _id: 'l2',
        book: 'b1',
        date: new Date('02/02/12'),
        lendingBy: 'maria'
    }
]);

-神奇之处:

db.books.find().forEach(
    function (newBook) {
        newBook.category = db.categories.findOne( { "_id": newBook.category } );
        newBook.lendings = db.lendings.find( { "book": newBook._id  } ).toArray();
        newBook.authors = db.authors.find( { "_id": { $in: newBook.authors }  } ).toArray();
        db.booksReloaded.insert(newBook);
    }
);

-获取新的收集数据:

db.booksReloaded.find().pretty()

-回复:)

{
    "_id" : "b1",
    "name" : "Groovy Book",
    "category" : {
        "_id" : "c1",
        "name" : "sci-fi"
    },
    "authors" : [
        {
            "_id" : "a1",
            "name" : {
                "first" : "orlando",
                "last" : "becerra"
            },
            "age" : 27
        }
    ],
    "lendings" : [
        {
            "_id" : "l1",
            "book" : "b1",
            "date" : ISODate("2011-01-01T00:00:00Z"),
            "lendingBy" : "jose"
        },
        {
            "_id" : "l2",
            "book" : "b1",
            "date" : ISODate("2012-02-02T00:00:00Z"),
            "lendingBy" : "maria"
        }
    ]
}
{
    "_id" : "b2",
    "name" : "Java Book",
    "category" : {
        "_id" : "c2",
        "name" : "romance"
    },
    "authors" : [
        {
            "_id" : "a1",
            "name" : {
                "first" : "orlando",
                "last" : "becerra"
            },
            "age" : 27
        },
        {
            "_id" : "a2",
            "name" : {
                "first" : "mayra",
                "last" : "sanchez"
            },
            "age" : 21
        }
    ],
    "lendings" : [ ]
}

希望这句话能帮到你。

从Mongo 3.2开始,这个问题的答案大多不再正确。添加到聚合管道中的新的$lookup操作符本质上与左外连接相同:

https://docs.mongodb.org/master/reference/operator/aggregation/lookup/#pipe._S_lookup

从文档中可以看出:

{
   $lookup:
     {
       from: <collection to join>,
       localField: <field from the input documents>,
       foreignField: <field from the documents of the "from" collection>,
       as: <output array field>
     }
}

当然,MongoDB不是一个关系数据库,开发人员正在谨慎地推荐$lookup的特定用例,但至少在3.2中,使用MongoDB进行连接是可能的。