我使用sklearn和有一个问题的亲和传播。我已经建立了一个输入矩阵,我一直得到以下错误。

ValueError: Input contains NaN, infinity or a value too large for dtype('float64').

我已经跑了

np.isnan(mat.any()) #and gets False
np.isfinite(mat.all()) #and gets True

我试着用

mat[np.isfinite(mat) == True] = 0

去除掉无限值,但这也没用。 我要怎么做才能去掉矩阵中的无穷大值,这样我就可以使用亲和传播算法了?

我使用anaconda和python 2.7.9。


当前回答

这里没有一个答案对我有用。这是有效的。

Test_y = np.nan_to_num(Test_y)

它将无穷大值替换为高有限值,将nan值替换为数字

其他回答

我的输入数组的维度是倾斜的,因为我的输入csv有空格。

在我的例子中,问题是许多scikit函数返回numpy数组,这些数组没有pandas索引。因此,当我使用那些numpy数组来构建新的dataframe时,有一个索引不匹配,然后我尝试将它们与原始数据混合。

这里没有一个答案对我有用。这是有效的。

Test_y = np.nan_to_num(Test_y)

它将无穷大值替换为高有限值,将nan值替换为数字

这可能发生在scikit内部,这取决于您正在做什么。我建议阅读您正在使用的函数的文档。你可能会使用一个,例如,你的矩阵是正定的,不满足那个条件。

编辑:我怎么能错过呢?

np.isnan(mat.any()) #and gets False
np.isfinite(mat.all()) #and gets True

显然是错误的。正确的是:

np.any(np.isnan(mat))

and

np.all(np.isfinite(mat))

您想要检查是否有任何元素是NaN,而不是任何函数的返回值是否为数字…

在python 3的这个版本中:

/opt/anaconda3/bin/python --version
Python 3.6.0 :: Anaconda 4.3.0 (64-bit)

查看错误的详细信息,我发现导致失败的代码行:

/opt/anaconda3/lib/python3.6/site-packages/sklearn/utils/validation.py in _assert_all_finite(X)
     56             and not np.isfinite(X).all()):
     57         raise ValueError("Input contains NaN, infinity"
---> 58                          " or a value too large for %r." % X.dtype)
     59 
     60 

ValueError: Input contains NaN, infinity or a value too large for dtype('float64').

由此,我能够提取正确的方法来测试我的数据所发生的事情,使用由错误消息给出的失败的相同测试:

然后,通过一个快速而肮脏的循环,我能够发现我的数据确实包含nan:

print(p[:,0].shape)
index = 0
for i in p[:,0]:
    if not np.isfinite(i):
        print(index, i)
    index +=1

(367340,)
4454 nan
6940 nan
10868 nan
12753 nan
14855 nan
15678 nan
24954 nan
30251 nan
31108 nan
51455 nan
59055 nan
...

现在我要做的就是去掉这些下标处的值。