我使用sklearn和有一个问题的亲和传播。我已经建立了一个输入矩阵,我一直得到以下错误。

ValueError: Input contains NaN, infinity or a value too large for dtype('float64').

我已经跑了

np.isnan(mat.any()) #and gets False
np.isfinite(mat.all()) #and gets True

我试着用

mat[np.isfinite(mat) == True] = 0

去除掉无限值,但这也没用。 我要怎么做才能去掉矩阵中的无穷大值,这样我就可以使用亲和传播算法了?

我使用anaconda和python 2.7.9。


当前回答

在我的例子中,算法要求数据在(0,1)之间不包含。我非常残酷的解决方案是在所有期望值中添加一个小随机数:

y_train = pd.DataFrame(y_train).applymap(lambda x: x + np.random.rand()/100000.0)["col_name"]
y_train[y_train >= 1] = 0.999999

而y_train在[0,1]的范围内。

这当然不适合所有的情况,因为你会弄乱你的输入数据,但如果你有稀疏的数据,只需要一个快速的预测,这是一个解决方案

其他回答

如果您正在运行一个估计器,可能是您的学习率太高了。我意外地将错误的数组传递给了网格搜索,最终训练的学习率为500,我可以看到这导致了训练过程中的问题。

基本上,不仅你的输入必须全部有效,中间数据也必须有效。

使用isneginf可能会有所帮助。 http://docs.scipy.org/doc/numpy/reference/generated/numpy.isneginf.html#numpy.isneginf

x[numpy.isneginf(x)] = 0 #0 is the value you want to replace with

如果您碰巧使用“kc_house_data.csv”数据集(一些评论者和许多数据科学新手似乎使用这个数据集,因为它出现在许多流行的课程材料中),则该数据是错误的,并且是错误的真正来源。

为了解决这个问题,从2022年开始:

删除csv文件中的最后一行(空) 有两行包含一个空数据值"x,x,,x,x" -要修复它,不要删除逗号,而是添加一个随机整数值,如2000,因此它看起来像"x,x,2000,x,x"

不要忘记在项目中保存和重新加载。

所有其他答案都是有帮助和正确的,但在这种情况下不是:

如果你使用kc_house_data.csv,你需要修复文件中的数据,没有其他帮助,空数据字段将随机转移其他数据,并产生难以追踪到源的奇怪错误!

我有同样的问题,在我的情况下,答案很简单,我有一个单元格在我的CSV中没有值(“x,y,z,,”)。把一个默认值固定为我。

我想为numpy提出一个适合我的解决方案。这条线

from numpy import inf
inputArray[inputArray == inf] = np.finfo(np.float64).max

将numpy数组的所有无限值替换为最大的float64数。