我使用sklearn和有一个问题的亲和传播。我已经建立了一个输入矩阵,我一直得到以下错误。

ValueError: Input contains NaN, infinity or a value too large for dtype('float64').

我已经跑了

np.isnan(mat.any()) #and gets False
np.isfinite(mat.all()) #and gets True

我试着用

mat[np.isfinite(mat) == True] = 0

去除掉无限值,但这也没用。 我要怎么做才能去掉矩阵中的无穷大值,这样我就可以使用亲和传播算法了?

我使用anaconda和python 2.7.9。


当前回答

使用isneginf可能会有所帮助。 http://docs.scipy.org/doc/numpy/reference/generated/numpy.isneginf.html#numpy.isneginf

x[numpy.isneginf(x)] = 0 #0 is the value you want to replace with

其他回答

这里没有一个答案对我有用。这是有效的。

Test_y = np.nan_to_num(Test_y)

它将无穷大值替换为高有限值,将nan值替换为数字

这是它失败的检查:

https://github.com/scikit-learn/scikit-learn/blob/0.17.X/sklearn/utils/validation.py#L51

def _assert_all_finite(X):
    """Like assert_all_finite, but only for ndarray."""
    X = np.asanyarray(X)
    # First try an O(n) time, O(1) space solution for the common case that
    # everything is finite; fall back to O(n) space np.isfinite to prevent
    # false positives from overflow in sum method.
    if (X.dtype.char in np.typecodes['AllFloat'] and not np.isfinite(X.sum())
            and not np.isfinite(X).all()):
        raise ValueError("Input contains NaN, infinity"
                         " or a value too large for %r." % X.dtype)

所以确保你的输入中有非NaN值。所有这些值实际上都是浮点值。这些值也不应该是Inf。

我有同样的错误,在我的情况下,X和y是数据帧,所以我必须先将它们转换为矩阵:

X = X.values.astype(np.float)
y = y.values.astype(np.float)

编辑:最初建议的X.as_matrix()已弃用

我得到了同样的错误。它适用于df。fillna(-99999, inplace=True),然后再做任何替换,替换等

这是我的函数(基于此)来清除数据集的nan, Inf和缺失的单元格(用于倾斜的数据集):

import pandas as pd
import numpy as np

def clean_dataset(df):
    assert isinstance(df, pd.DataFrame), "df needs to be a pd.DataFrame"
    df.dropna(inplace=True)
    indices_to_keep = ~df.isin([np.nan, np.inf, -np.inf]).any(axis=1)
    return df[indices_to_keep].astype(np.float64)