今天,我的一个朋友在面试软件开发人员的职位时被问到以下问题:

给定两个字符串s1和s2,你将如何检查s1是否是s2的旋转版本?

例子:

如果s1 = "stackoverflow",则以下是它的一些旋转版本:

"tackoverflows"
"ackoverflowst"
"overflowstack"

其中“stackoverflwo”不是一个旋转的版本。

他给出的答案是:

取s2,找出s1的子字符串中最长的前缀,就能得到旋转的点。一旦你找到了那个点,在那个点打断s2得到s2a和s2b,然后检查是否连接(s2a,s2b) == s1

对我和我的朋友来说,这是一个很好的解决方案。但是面试官不这么认为。他要求一个更简单的解决办法。请告诉我在Java/C/ c++中你是如何做到这一点的?

提前谢谢你。


当前回答

C#:

s1 == null && s2 == null || s1.Length == s2.Length && (s1 + s1).Contains(s2)

其他回答

哇,哇……为什么每个人都对O(n²)的答案如此兴奋?我相信我们可以做得更好。上面的答案包括O(n)循环中的O(n)操作(substring/indexOf调用)。即使有更高效的搜索算法;比如Boyer-Moore或KMP,最坏情况仍然是O(n^2)有重复。

O(n)随机化的答案很简单;取一个支持O(1)滑动窗口的哈希值(如Rabin指纹);哈希字符串1,然后哈希字符串2,然后继续围绕字符串移动哈希1的窗口,看看哈希函数是否冲突。

如果我们想象最坏的情况是“扫描两条DNA链”,那么碰撞的概率就会上升,这可能退化为O(n^(1+e))或其他(只是猜测)。

最后,有一个确定的O(nlogn)解,它有一个非常大的常数。基本上,就是对两个弦进行卷积。卷积的最大值将是旋转差(如果它们被旋转);O(n)检查确认。好处是如果有两个相等的最大值,那么它们也是有效解。你可以用两个FFT进行卷积一个点积,一个iFFT,所以nlogn + nlogn + n + nlogn + n = O(nlogn)

因为你不能用0填充,你不能保证字符串的长度是2^n, fft不会是最快的;它们会变慢,仍然是O(nlogn),但比CT算法大得多。

说了这么多,我绝对,100%肯定这里有一个确定的O(n)解,但我不知道我能不能找到它。

使用strlen和strpos函数在PHP中很容易编写:

function isRotation($string1, $string2) {
    return strlen($string1) == strlen($string2) && (($string1.$string1).strpos($string2) != -1);
}

我不知道strpos内部使用什么,但如果它使用KMP,它将在时间上是线性的。

现在来点完全不同的东西。

如果你想在一些约束条件下快速得到答案当字符串不是相互旋转时

在两个字符串上计算一些基于字符的校验和(比如xoring所有字符)。如果签名不同,字符串不是彼此的旋转。

同意,它可能会失败,但如果字符串不匹配,它会很快说,如果它们匹配,你仍然可以使用另一种算法,比如字符串连接来检查。

不确定这是否是最有效的方法,但它可能相对有趣:Burrows-Wheeler变换。根据WP文章,输入的所有旋转产生相同的输出。对于压缩等应用程序,这是不可取的,所以原始旋转被指示(例如通过索引;参见文章)。但对于简单的与旋转无关的比较,这听起来很理想。当然,这并不一定是理想的效率!

将每个字符作为振幅,并对其进行离散傅里叶变换。如果它们仅因旋转而不同,则频谱将在舍入误差范围内相同。当然,这是低效的,除非长度是2的幂,所以你可以做FFT:-)