我试图从一个csv文件创建一个字典。csv文件的第一列包含唯一的键,第二列包含值。csv文件的每一行都表示字典中的唯一键、值对。我尝试使用csv文件。DictReader和csv。类的DictWriter,但我只知道如何为每一行生成一个新字典。我想要一本字典。这是我试图使用的代码:

import csv

with open('coors.csv', mode='r') as infile:
    reader = csv.reader(infile)
    with open('coors_new.csv', mode='w') as outfile:
    writer = csv.writer(outfile)
    for rows in reader:
        k = rows[0]
        v = rows[1]
        mydict = {k:v for k, v in rows}
    print(mydict)

当我运行上面的代码时,我得到一个ValueError:太多的值来解包(预期2)。我如何从csv文件创建一个字典?谢谢。


当前回答

通过调用Open,然后使用csv.DictReader打开文件。

input_file = csv.DictReader(open("coors.csv"))

您可以通过迭代input_file遍历csv文件dict读取器对象的行。

for row in input_file:
    print(row)

或 仅访问第一行

dictobj = csv.DictReader(open('coors.csv')).next() 

更新 在python 3+版本中,这段代码会有一些变化:

reader = csv.DictReader(open('coors.csv'))
dictobj = next(reader) 

其他回答

假设你有一个这样结构的CSV:

"a","b"
1,2
3,4
5,6

你希望输出是:

[{'a': '1', ' "b"': '2'}, {'a': '3', ' "b"': '4'}, {'a': '5', ' "b"': '6'}]

zip函数(还没有提到)非常简单,而且非常有用。

def read_csv(filename):
    with open(filename) as f:
        file_data=csv.reader(f)
        headers=next(file_data)
        return [dict(zip(headers,i)) for i in file_data]

如果你更喜欢熊猫,它也可以很好地做到这一点:

import pandas as pd
def read_csv(filename):
    return pd.read_csv(filename).to_dict('records')

通过调用Open,然后使用csv.DictReader打开文件。

input_file = csv.DictReader(open("coors.csv"))

您可以通过迭代input_file遍历csv文件dict读取器对象的行。

for row in input_file:
    print(row)

或 仅访问第一行

dictobj = csv.DictReader(open('coors.csv')).next() 

更新 在python 3+版本中,这段代码会有一些变化:

reader = csv.DictReader(open('coors.csv'))
dictobj = next(reader) 

我建议添加if行,以防文件末尾有空行

import csv
with open('coors.csv', mode='r') as infile:
    reader = csv.reader(infile)
    with open('coors_new.csv', mode='w') as outfile:
        writer = csv.writer(outfile)
        mydict = dict(row[:2] for row in reader if row)

你只需要转换csv。读者dict:

~ >> cat > 1.csv
key1, value1
key2, value2
key2, value22
key3, value3

~ >> cat > d.py
import csv
with open('1.csv') as f:
    d = dict(filter(None, csv.reader(f)))

print(d)

~ >> python d.py
{'key3': ' value3', 'key2': ' value22', 'key1': ' value1'}

一行程序解决方案

import pandas as pd

dict = {row[0] : row[1] for _, row in pd.read_csv("file.csv").iterrows()}