在R中,mean()和median()是标准函数,它们执行您所期望的功能。Mode()告诉您对象的内部存储模式,而不是参数中出现次数最多的值。但是是否存在一个标准库函数来实现向量(或列表)的统计模式?


当前回答

下面的函数有三种形式:

method = "mode"[默认值]:计算单模态向量的模式,否则返回NA Method = "nmodes":计算vector中模式的个数 Method = "modes":列出单模态或多模态向量的所有模态

modeav <- function (x, method = "mode", na.rm = FALSE)
{
  x <- unlist(x)
  if (na.rm)
    x <- x[!is.na(x)]
  u <- unique(x)
  n <- length(u)
  #get frequencies of each of the unique values in the vector
  frequencies <- rep(0, n)
  for (i in seq_len(n)) {
    if (is.na(u[i])) {
      frequencies[i] <- sum(is.na(x))
    }
    else {
      frequencies[i] <- sum(x == u[i], na.rm = TRUE)
    }
  }
  #mode if a unimodal vector, else NA
  if (method == "mode" | is.na(method) | method == "")
  {return(ifelse(length(frequencies[frequencies==max(frequencies)])>1,NA,u[which.max(frequencies)]))}
  #number of modes
  if(method == "nmode" | method == "nmodes")
  {return(length(frequencies[frequencies==max(frequencies)]))}
  #list of all modes
  if (method == "modes" | method == "modevalues")
  {return(u[which(frequencies==max(frequencies), arr.ind = FALSE, useNames = FALSE)])}  
  #error trap the method
  warning("Warning: method not recognised.  Valid methods are 'mode' [default], 'nmodes' and 'modes'")
  return()
}

其他回答

虽然我喜欢肯威廉姆斯简单的功能,我想检索多种模式,如果他们存在。考虑到这一点,我使用下面的函数,它返回多个模式或单个模式的列表。

rmode <- function(x) {
  x <- sort(x)  
  u <- unique(x)
  y <- lapply(u, function(y) length(x[x==y]))
  u[which( unlist(y) == max(unlist(y)) )]
} 

CRAN上现在可用的折叠包中的通用函数fmode实现了基于索引哈希的基于c++的模式。它比上述任何一种方法都要快得多。它提供了向量、矩阵、data.frames和dplyr分组tibbles的方法。语法:

libary(collapse)
fmode(x, g = NULL, w = NULL, ...)

其中x可以是上述对象之一,g提供一个可选的分组向量或分组向量列表(用于分组模式计算,也在c++中执行),w(可选)提供一个数值权重向量。在分组tibble方法中,没有g参数,您可以执行data %>% group_by(idvar) %>% fmode。

我发现Ken Williams上面的帖子很棒,我添加了几行来解释NA值,并使其成为一个函数。

Mode <- function(x, na.rm = FALSE) {
  if(na.rm){
    x = x[!is.na(x)]
  }

  ux <- unique(x)
  return(ux[which.max(tabulate(match(x, ux)))])
}

在我看来,如果一个集合有一个模式,那么它的元素就可以与自然数一一对应。因此,查找模式的问题简化为生成这样一个映射,查找映射值的模式,然后映射回集合中的一些项。(处理NA发生在映射阶段)。

我有一个直方图函数,它的原理类似。(本文代码中使用的特殊函数和操作符应在Shapiro和/或neatOveRse中定义。在此复制夏皮罗和奈尔斯的部分是经过允许的;复制的片段可根据本网站的条款使用。)直方图的伪代码是

.histogram <- function (i)
        if (i %|% is.empty) integer() else
        vapply2(i %|% max %|% seqN, `==` %<=% i %O% sum)

histogram <- function(i) i %|% rmna %|% .histogram

(特殊的二进制操作符完成管道、咖喱和组合)我还有一个maxloc函数,它与which类似。Max,但返回一个向量的所有绝对最大值。maxloc的R伪代码是

FUNloc <- function (FUN, x, na.rm=F)
        which(x == list(identity, rmna)[[na.rm %|% index.b]](x) %|% FUN)

maxloc <- FUNloc %<=% max

minloc <- FUNloc %<=% min # I'M THROWING IN minloc TO EXPLAIN WHY I MADE FUNloc

Then

imode <- histogram %O% maxloc

and

x %|% map %|% imode %|% unmap

将计算任何集合的模式,只要定义了适当的映射-ping和取消映射-ping函数。

可以尝试以下功能:

将数值转换为因子 使用summary()获取频率表 返回模式为频率最大的索引 转换因子回到数字,即使有超过1个模式,这个函数工作得很好!

mode <- function(x){
  y <- as.factor(x)
  freq <- summary(y)
  mode <- names(freq)[freq[names(freq)] == max(freq)]
  as.numeric(mode)
}