我试图使用熊猫操作.csv文件,但我得到这个错误:

pandas.parser.CParserError:标记数据错误。C错误:第3行有2个字段,见12

我试着读过熊猫的文件,但一无所获。

我的代码很简单:

path = 'GOOG Key Ratios.csv'
#print(open(path).read())
data = pd.read_csv(path)

我该如何解决这个问题?我应该使用csv模块还是其他语言?

文件来自晨星公司


当前回答

这看起来很丑,但你会有你的数据框架

import re
path = 'GOOG Key Ratios.csv'

try:
    data = pd.read_csv(path)
except Exception as e:
    val = re.findall('tokenizing.{1,100}\s*Expected\s*(\d{1,2})\s*',str(e),re.I)
    data = pd.read_csv(path, skiprows=int(val[0])-1)

其他回答

检查是否使用正确的分隔符加载csv。

df = pd.read_csv(csvname, header=0, sep=",")

这可能是个问题

数据中的分隔符 第一行,正如@TomAugspurger所指出的

要解决这个问题,请在调用read_csv时尝试指定sep和/或头参数。例如,

df = pandas.read_csv(filepath, sep='delimiter', header=None)

在上面的代码中,sep定义了您的分隔符和header=None,告诉pandas您的源数据没有作为标题/列标题的行。因此,文档说:“如果文件不包含标题行,那么你应该显式地传递header=None”。在这种情况下,pandas会自动为每个字段{0,1,2,…}创建整数索引。

根据文档,分隔符应该不是问题。文档中说“如果sep为None[未指定],将尝试自动确定此值。”然而,我在这方面运气不太好,包括带有明显分隔符的实例。

另一种解决方案可能是尝试自动检测分隔符

# use the first 2 lines of the file to detect separator
temp_lines = csv_file.readline() + '\n' + csv_file.readline()
dialect = csv.Sniffer().sniff(temp_lines, delimiters=';,')

# remember to go back to the start of the file for the next time it's read
csv_file.seek(0) 

df = pd.read_csv(csv_file, sep=dialect.delimiter)

你可以这样做,以避免问题-

train = pd.read_csv('/home/Project/output.csv' , header=None)

just add - header=None

希望这能有所帮助!!

解析器被文件头弄糊涂了。它读取第一行并从该行推断列数。但是前两行并不能代表文件中的实际数据。

用data = pd试试。read_csv(路径,skiprows = 2)

这肯定是分隔符的问题,因为大多数csv csv都是使用sep='/t'创建的,所以尝试使用分隔符/t的制表符(\t)来读取csv。所以,尝试使用下面的代码行打开。

data=pd.read_csv("File_path", sep='\t')