我试图使用熊猫操作.csv文件,但我得到这个错误:
pandas.parser.CParserError:标记数据错误。C错误:第3行有2个字段,见12
我试着读过熊猫的文件,但一无所获。
我的代码很简单:
path = 'GOOG Key Ratios.csv'
#print(open(path).read())
data = pd.read_csv(path)
我该如何解决这个问题?我应该使用csv模块还是其他语言?
文件来自晨星公司
我试图使用熊猫操作.csv文件,但我得到这个错误:
pandas.parser.CParserError:标记数据错误。C错误:第3行有2个字段,见12
我试着读过熊猫的文件,但一无所获。
我的代码很简单:
path = 'GOOG Key Ratios.csv'
#print(open(path).read())
data = pd.read_csv(path)
我该如何解决这个问题?我应该使用csv模块还是其他语言?
文件来自晨星公司
当前回答
我有一个已有行号的数据集,我使用index_col:
pd.read_csv('train.csv', index_col=0)
其他回答
据我所知,在查看了您的文件后,问题是您试图加载的csv文件有多个表。有空行,或者包含表标题的行。试着看看这个Stackoverflow的答案。它展示了如何以编程方式实现这一点。
另一种动态方法是使用csv模块,一次读取每一行,并进行健全检查/正则表达式,以推断该行是否为(title/header/values/blank)。使用这种方法还有一个优点,你可以根据需要在python对象中分割/追加/收集数据。
最简单的方法是在手动选择表格并将其复制到剪贴板后使用pandas函数pd.read_clipboard(),以防您可以在excel或其他工具中打开csv。
无关:
此外,与您的问题无关,但因为没有人提到这一点:我在从UCI加载一些数据集(如seeds_dataset.txt)时遇到了同样的问题。在我的例子中,发生错误是因为一些分隔符的空格比真正的制表符多。例如,请参见下面的第3行
14.38 14.21 0.8951 5.386 3.312 2.462 4.956 1
14.69 14.49 0.8799 5.563 3.259 3.586 5.219 1
14.11 14.1 0.8911 5.42 3.302 2.7 5 1
因此,在分隔符模式中使用\t+而不是\t。
data = pd.read_csv(path, sep='\t+`, header=None)
我有一个类似的情况
train = pd.read_csv('input.csv' , encoding='latin1',engine='python')
工作
我也遇到过同样的问题。在同一个源文件上使用pd.read_table()似乎可以工作。我找不到原因,但对我的情况来说,这是一个有用的变通办法。也许有更博学的人能解释清楚为什么它能起作用。
编辑: 我发现,当文件中的某些文本与实际数据的格式不一致时,这个错误就会出现。这通常是页眉或页脚信息(大于一行,所以skip_header不起作用),它们不会被与实际数据相同数量的逗号分隔(当使用read_csv时)。使用read_table使用制表符作为分隔符,可以避免用户当前错误,但引入其他错误。
我通常通过将额外的数据读入文件,然后使用read_csv()方法来解决这个问题。
具体的解决方案可能因您的实际文件而异,但这种方法在一些情况下对我来说是有效的
使用 熊猫。read_csv (CSVFILENAME,头= None, 9 = " ")
当试图从链接中读取CSV数据时
http://archive.ics.uci.edu/ml/machine-learning-databases/adult/adult.data
我将该网站的数据复制到我的csv文件中。它有额外的空格,所以使用sep =', '并且它工作:)
在我的例子中,分隔符不是默认的“,”,而是Tab。
pd.read_csv(file_name.csv, sep='\\t',lineterminator='\\r', engine='python', header='infer')
注意:“\t”并不像某些来源所建议的那样有效。“\\t”是必需的。