我有一个这样的数据帧:

print(df)

        0          1     2
0   354.7      April   4.0
1    55.4     August   8.0
2   176.5   December  12.0
3    95.5   February   2.0
4    85.6    January   1.0
5     152       July   7.0
6   238.7       June   6.0
7   104.8      March   3.0
8   283.5        May   5.0
9   278.8   November  11.0
10  249.6    October  10.0
11  212.7  September   9.0

如您所见,月份不是按日历顺序排列的。因此,我创建了第二列来获取每个月对应的月份号(1-12)。在此基础上,如何根据日历月份的顺序对数据帧进行排序?


当前回答

下面是根据pandas文档的sort_values模板。

DataFrame.sort_values(by, axis=0,
                          ascending=True,
                          inplace=False,
                          kind='quicksort',
                          na_position='last',
                          ignore_index=False, key=None)[source]

在这种情况下,它是这样的。

df.sort_values (= [' 2 '])

API参考pandas.DataFrame.sort_values

其他回答

你可能需要在排序后重置索引:

df = df.sort_values('2')
df = df.reset_index(drop=True)

如果您想动态排序列,而不是按字母顺序排序。 并且不想使用pd.sort_values()。 你可以试试下面的解决方案。

问题:在这个序列['A', 'C', 'D', 'B']中排序列"col1"

import pandas as pd
import numpy as np

## Sample DataFrame ##
df = pd.DataFrame({'col1': ['A', 'B', 'D', 'C', 'A']})

>>> df
   col1
0    A
1    B
2    D
3    C
4    A
## Solution ##

conditions = []
values = []

for i,j in enumerate(['A','C','D','B']):
    conditions.append((df['col1'] == j))
    values.append(i)

df['col1_Num'] = np.select(conditions, values)

df.sort_values(by='col1_Num',inplace = True)

>>> df

    col1  col1_Num
0    A         0
4    A         0
3    C         1
2    D         2
1    B         3

只是在数据上增加了一些操作。假设我们有一个数据帧df,我们可以做几个操作来得到想要的输出

ID         cost      tax    label
1       216590      1600    test      
2       523213      1800    test 
3          250      1500    experiment

(df['label'].value_counts().to_frame().reset_index()).sort_values('label', ascending=False)

将给分类输出标签作为一个数据框架

    index   label
0   test        2
1   experiment  1

使用sort_values根据特定列的值对df进行排序:

In [18]:
df.sort_values('2')

Out[18]:
        0          1     2
4    85.6    January   1.0
3    95.5   February   2.0
7   104.8      March   3.0
0   354.7      April   4.0
8   283.5        May   5.0
6   238.7       June   6.0
5   152.0       July   7.0
1    55.4     August   8.0
11  212.7  September   9.0
10  249.6    October  10.0
9   278.8   November  11.0
2   176.5   December  12.0

如果希望按两列排序,则将列标签列表传递给sort_values,其中列标签按照排序优先级排序。如果用df。Sort_values(['2', '0']),则结果将按第2列和第0列排序。当然,这对于这个例子来说没有意义,因为df['2']中的每个值都是唯一的。

我尝试了上面的解决方案,但没有达到效果,所以我找到了一个适合我的不同的解决方案。升序=False是将数据帧按降序排列,默认情况下为True。我使用的是python 3.6.6和pandas 0.23.4版本。

final_df = df.sort_values(by=['2'], ascending=False)

你可以在pandas文档中看到更多细节。