我有一个这样的数据帧:

print(df)

        0          1     2
0   354.7      April   4.0
1    55.4     August   8.0
2   176.5   December  12.0
3    95.5   February   2.0
4    85.6    January   1.0
5     152       July   7.0
6   238.7       June   6.0
7   104.8      March   3.0
8   283.5        May   5.0
9   278.8   November  11.0
10  249.6    October  10.0
11  212.7  September   9.0

如您所见,月份不是按日历顺序排列的。因此,我创建了第二列来获取每个月对应的月份号(1-12)。在此基础上,如何根据日历月份的顺序对数据帧进行排序?


当前回答

只是增加了一些见解

df=raw_df['2'].sort_values() # will sort only one column (i.e 2)

但是,

df =raw_df.sort_values(by=["2"] , ascending = False)  # this  will sort the whole df in decending order on the basis of the column "2"

其他回答

只是在数据上增加了一些操作。假设我们有一个数据帧df,我们可以做几个操作来得到想要的输出

ID         cost      tax    label
1       216590      1600    test      
2       523213      1800    test 
3          250      1500    experiment

(df['label'].value_counts().to_frame().reset_index()).sort_values('label', ascending=False)

将给分类输出标签作为一个数据框架

    index   label
0   test        2
1   experiment  1

这对我很有效

df.sort_values(by='Column_name', inplace=True, ascending=False)

例子: 假设你有一个值为1和0的列,你想要分离并只使用一个值,那么:

// furniture is one of the columns in the csv file.
 

allrooms = data.groupby('furniture')['furniture'].agg('count')
allrooms


myrooms1 = pan.DataFrame(allrooms, columns = ['furniture'], index = [1])

myrooms2 = pan.DataFrame(allrooms, columns = ['furniture'], index = [0])

print(myrooms1);print(myrooms2)

使用列名对我很有用。

sorted_df = df.sort_values(by=['Column_name'], ascending=True)

你可能需要在排序后重置索引:

df = df.sort_values('2')
df = df.reset_index(drop=True)